Combining Lexical Resources: Mapping Between PropBank and VerbNet

Edward Loper, Szu-ting Yi, Martha Palmer September 2006

Using Lexical Information

- Many interesting tasks require... Information about lexical items... and how they relate to each other.
- E.g., question answering.
 - Q: Where are the grape arbors located?

A: Every path from back door to yard was covered by a grape-arbor, and every yard had fruit trees.

Lexical Resources

- Wide variety of lexical resources available
 - VerbNet, PropBank, FrameNet, WordNet, etc.
- Each resource was created with different goals and different theoretical backgrounds.
 - Each resource has a different approach to defining word senses.

SemLink: Mapping Lexical Resources

- Different lexical resources provide us with different information.
- To make useful inferences, we need to *combine* this information.
- In particular:
 - PropBank -- How does a verb relate to its arguments? Includes annotated text.
 - VerbNet -- How do verbs w/ shared semantic & syntactic features (and their arguments) relate?
 - **FrameNet** -- How do verbs that describe a common scenario relate?
 - WordNet -- What verbs are synonymous?
 - Cyc -- How do verbs relate to a knowledge based ontology?

* Martha Palmer, Edward Loper, Andrew Dolbey, Derek Trumbo, Karin Kipper, Szu-Ting Yi

PropBank

- 1M words of WSJ annotated with predicateargument structures for verbs.
 - The location & type of each verb's arguments
- Argument types are defined on a per-verb basis.
 - Consistent across uses of a single verb (sense)
- But the same tags are used (Arg0, Arg1, Arg2, ...)
 - Arg0 ≈ proto-typical agent (Dowty)
 - Arg1 \approx proto-typical patient

PropBank: cover (smear, put over)

- Arguments:
 - Arg0 = causer of covering
 - Arg1 = thing covered
 - Arg2 = covered with
- Example:

John *covered* the bread with peanut butter.

PropBank: Trends in Argument Numbering

- $\operatorname{Arg0} = \operatorname{proto-typical agent} (Dowty)$ Agent (85%), Experiencer (7%), Theme (2%), ...
- Arg1 = proto-typical patient (Dowty) Theme (47%), Topic (23%), Patient (11%), ...
- Arg2 = Recipient (22%), Extent (15%), Predicate (14%), ...
- Arg3 = Asset (33%), Theme2 (14%), Recipient (13%), ...
- Arg4 = Location (89%), Beneficiary (5%), ...
- Arg5 = Location (94%), Destination (6%)

PropBank: Adjunct Tags

- Variety of ArgM's (Arg#>5):
 - TMP: when?
 - LOC: where at?
 - DIR: where to?
 - MNR: how?
 - PRP: why?
 - REC: himself, themselves, each other
 - PRD: this argument refers to or modifies another
 - ADV: others

Limitations to PropBank as Training Data

- Args2-5 seriously overloaded \rightarrow poor performance
 - VerbNet and FrameNet both provide more fine-grained role labels
- Example
 - Rudolph Agnew,..., was named [ARG2/Predicate a nonexecutive director of this British industrial conglomerate.]
 -the latest results appear in today's New England Journal of Medicine, a forum likely to bring new attention [ARG2/Destination to the problem.]

Limitations to PropBank as Training Data (2)

- WSJ too domain specific & too financial.
- Need broader coverage genres for more general annotation.
 - Additional Brown corpus annotation, also
 GALE data
 - FrameNet has selected instances from BNC

How Can SemLink Help?

- In PropBank, Arg2-Arg5 are overloaded.
 - But in VerbNet, the same thematic roles across verbs.
- PropBank training data is too domain specific.
 - Use VerbNet as a bridge to merge PropBank w/ FrameNet
 - \rightarrow Expand the size and variety of the training data

VerbNet

- Organizes verbs into classes that have common syntax/semantics linking behavior
- Classes include...
 - A list of member verbs (w/ WordNet senses)
 - A set of thematic roles (w/ selectional restr.s)
 - A set of frames, which define both syntax & semantics using thematic roles.
- Classes are organized hierarchically

VerbNet Example

2 23 364 564 CI 36 677	JOUS_location Members: 37, Frames: 1	-47.8 POST COMMENT	CI CO
MEMBERS			
BESTRIDE	EDGE (WN 1)	HEAD (WN 1)	STF
BLANKET (FN 1; WN 1, 2)	ENCIRCLE (FN 1; WN 1)	HUG (WN 1)	SUI
BORDER (WN 1, 2, 3)	ENCLOSE (WN 1, 2)	LINE (FN 1; WN 1)	SUI
	ENCOMPAGE	OVERGLEE	0111
ROLES			
 THEME1 [+CONCRET THEME2 [+CONCRET 			

FRAMES	
BASIC TRANSIT	IVE
EXAMPLE	"Italy borders France"
SYNTAX	THEME1 V THEME2
SEMANTICS	CONTACT(DURING(E), THEME1, THEME2) EXIST(DURING(E), THEME1) EXIST(DURING(E), THEME2)

What do mappings look like?

- 2 Types of mappings:
 - Type mappings describe which entries from two resources might correspond; and how their fields (e.g. arguments) relate.
 - Potentially many-to-many
 - Generated manually or semi-automatically
 - **Token mappings** tell us, for a given sentence or instance, which type mapping applies.
 - Can often be thought of as a type of classifier
 - Built from a single corpus w/ parallel annotations
 - Can also be though of as word sense disambiguation
 - Because each resource defines word senses differently!

Mapping Issues

- Mappings are often many-to-many
 - Different resources focus on different distinctions
- Incomplete coverage
 - A resource may be missing a relevant lexical item entirely.
 - A resource may have the relevant lexical item, but not in the appropriate category or w/ the appropriate sense
- Field mismatches
 - It may not be possible to map the field information for corresponding entries. (E.g., predicate arguments)
 - Extra fields
 - Missing fields
 - Mismatched fields

VerbNet↔PropBank Mapping: Type Mapping

- Verb class ↔ Frame mapped when PropBank was created.
 - Doesn't cover all verbs in the intersection of PropBank & VerbNet
 - This intersection has grown significantly since PropBank was created.
- Argument mapping created semi-automatically
- Work is underway to extend coverage of both

VerbNet↔PropBank Mapping: Token Mapping

- Built using parallel VerbNet/PropBank training data
 - Also allows direct training of VerbNet-based SRL
- VerbNet annotations generated semi-automatically
 - Two automatic methods:
 - Use WordNet as an intermediary
 - Check syntactic similarities
 - Followed by hand correction

Using SemLink: Semantic Role Labeling

- Overall goal:
 - Identify the semantic entities in a document & determine how they relate to one another.
- As a machine learning task:
 - Find the predicate words (verbs) in a text.
 - Identify the predicates' arguments.
 - Label each argument with its semantic role.
- Train & test using PropBank

Current Problems for SRL

- PropBank role labels (Arg2-5) are not consistent across different verbs.
 - If we train within verbs, data is too sparse.
 - If we train across verbs, the output tags are too heterogeneous.
- Existing systems do not generalize well to new genes.
 - Training corpus (WSJ) contains a highly specialized genre, with many domain-specific verb senses.
 - Because of the verb-dependant nature of PropBank role labels, systems are forced to learn based on verb-specific features.
 - These features do not generalize well to new genres, where verbs are used with different word senses.
 - System performance drops on the Brown corpus

Improving SRL Performance w/ SemLink

- Existing PropBank role labels are too heterogeneous
 - So subdivide them into new role label sets, based on the SemLink mapping.
- Experimental Paradigm:
 - Subdivide existing PropBank roles based on what VerbNet thematic role (Agent, Patient, etc.) it is mapped to.
 - Compare the performance of:
 - The original SRL system (trained on PropBank)
 - The mapped SRL system (trained w/ subdivided roles)

Subdividing PropBank Roles

- Subdividing based on *individual VerbNet theta roles* leads to very sparse data.
- Instead, subdivide PropBank roles based on *groups of VerbNet roles*.
- Groupings created manually, based on analysis of argument use & suggestions from Karin Kipper.
- Two groupings:
 - 1. Subdivide Arg1 into 6 new roles:

 $\operatorname{Arg1}_{\operatorname{Group1}}, \operatorname{Arg1}_{\operatorname{Group2}}, ..., \operatorname{Arg1}_{\operatorname{Group6}}$

2. Subdivide Arg2 into 5 new roles:

 $Arg2_{Group1}, Arg2_{Group2}, ..., Arg2_{Group5}$

• Two test genres: Wall Street Journal & Brown Corpus

Argl groupings (Total count 59,710)

Group1	Group2	Group3	Group4	Group5
(53.11%)	(23.04%)	(16%)	(4.67%)	(.20%)
Theme; Theme1; Theme2; Predicate; Stimulus; Attribute	Торіс	Patient; Product; Patient1; Patient2	Agent; Actor2; Cause; Experiencer	Asset

Arg2 groupings (Total count 11,068)

Group1	Group2	Group3	Group4	Group5
(43.93%)	(14.74%)	(32.13%)	(6.81%)	(2.39%)
Recipient; Destination; Location; Source; Material; Beneficiary	Extent; Asset	Predicate; Attribute; Theme; Theme2; Theme1; Topic	Patient2; Product	Instrument; Actor2; Cause; Experiencer

Experimental Results: What do we expect?

- By subdividing PropBank roles, we make them more coherent. ... so they should be easier to learn.
- But by creating more role categories, we increase data sparseness. ... so they should be harder to learn.
- Arg1 is more coherent than Arg2
 ... so we expect more improvement from the Arg2 experiments.
- WSJ is the same genre that we trained on; Brown is a new genre. ... so we expect more improvement from Brown corpus experiments.

Experimental Results: Wall Street Journal Corpus

	Precision	Recall	F1
Arg1-Original	89.24	77.32	82.85
Arg1-Mapped	90.00	76.35	82.61
Difference	+0.76	-1.03	-0.24
Arg2-Original	73.04	57.44	64.31
Arg2-Mapped	84.11	60.55	70.41
Difference	+11.07	+3.11	+6.10

Experimental Results: Brown Corpus

	Precision	Recall	F1
Arg1-Original	86.01	71.46	78.07
Arg1-Mapped	88.24	71.15	78.78
Difference	+2.23	-0.31	+0.71
Arg2-Original	66.74	52.22	58.59
Arg2-Mapped	81.45	58.45	68.06
Difference	+14.71	+6.23	+9.47

Conclusions

• By using more coherent semantic role labels, we can improve machine learning performance.

– Can we use learnability to help evaluate role label sets?

- The process of mapping resources helps us improve them.
 - Helps us see what information is missing (e.g., roles).
 - Semi-automatically extend coverage.
- Mapping lexical resources allows to combine information in a single system.
 - Useful for QA, Entailment, IE, etc...

