Epydoc

API Documentation Extraction in Python

Edward Loper

Epydoc: Overview

* Extracts and organizes API documentation for
a Python library.
* Extracts documentation from...
¢ Docstrings
¢ Inspection
* Parsed source code
* And organizes it into a coherent reference...
* Webpage (HTML)
¢ Document (PDF)

API Documentation

e What it does:

¢ Defines the “interface” provided a library.

¢ Describes each object defined by the library.
e Why it’s useful:

¢ Explains how to use a library

¢ Documents how a library works

Writing API Documentation

¢ API documentation is tightly coupled
with source code.
¢ So it can be difficult to keep it in sync with
the implementation.
¢ Solution:
¢ Keep API documentation in docstrings.

¢ A docstring is a string constant at the top of
an object’s definition, that is available via
inspection.

Documentation Extraction

¢ It’s convenient to write API docs in the
source code...

¢ But it’s not convenient to read them there.

¢ Solution: use a tool that...
¢ Extracts API docs from the source code
¢ Converts them into a readable format

Avoiding Duplication

e Multiple objects can share the same
documentation:
* Overridden methods
¢ Interface implementations
¢ Wrapper functions
¢ But duplicating their documentation is
problematic:
¢ It clutters the source code
o It’s easy for different copies to get out of sync

Avoiding Duplication

* Epydoc provides 2 mechanisms to avoid
duplication:

e Documentation inheritance: A method
without a docstring inherits documentation
from the method it overrides.

o The “@include” field: Special markup that
can be used to include documentation from
any other object.

Epydoc’s Output

* Epydoc currently supports 2 output
formats:
* Webpage (HTML)
¢ Document (LaTeX/DVI/PS/PDF)
¢ And one more is in the works:
e Manpage

Webpage Output:
A Quick Tour

Table of Contents()| [Home Trees Index Help epydoc 2.0
Package cpydoc :: Module objdoc s e]

Everything .
Module epydoc.objdoc

Packages

cpydoc Support for Ob3Docs, which encode the information about a Python object that is necessary to

docmazm " | create i ObjDocs are created and managed by the DocMap class, which acts like

a dictionary from UIDS to Ob3Does.

Textual documentation entries (c.g., module descriptions, method descriptions, variable types,
see-also entries) are encoded as arsedpocstrings.

Webpage Output:
Table of Contents

Table of Contents()

Everything

Packages
epydoc

Classes

Classes

I Each Python object is identified by a globally unique identifier, implemented with the Uzp class.
DocField These identifiers are also used by the Link class to implement crossreferencing between
DocMap 0bjDocs.
FuncDoc
ModuleDoc
ObjDoc Classes
Param The ion for a lass.
e Docrield |A generic docstring ficld.
Var Doctiap | A dictionary mapping cach object to the object's documentation.

Funcboc | The documentation for a function.

Functions The documentation for a module or package.
pad vardels /A base class for encoding the information about a Python object that
i vardets < lon100e ase class for encoding the information about a Python object that is necessary
e v 2aRee o create its documentation.

Var

Functions
add vardefs
find vardefs

Webpage Output:
Navigation Bar

[Home Trees Index Help wymmml

,,,,, - | Package epydoc :: Module objdoc T e e pivee]

o3 20 fames)

Webpage Output:
Navigation Bar

epydoc 2.0/
how prvate | hide privace]
(frames | no frames]

[Home Trees Index Help :

| Home Trees Index Help
Package epydoc :: Module objdoc

Webpage Output:
Navigation Bar

:oii [Home Trees Index Help
-~ 7" Package cpydoc iz Module objdoc

epydoc
o privace | ide rate]
(s | 0 fumes]

epydoc z.d

[show private | hide private]
[frames | no frames]

Webpage Output:
Module Documentation

fModule epydoc.objdoc

Support for Ob3Docs, which encode the information about a Python object that is necessary to
create its documentation. Ob3Does are created and managed by the Docap class, which acts like
- a dictionary from uzps to Ob3Docs.

_ | Textual documentation entries (c.g., module descriptions, method descriptions, variable types,
see-also entries) are encoded as arsedpocstrings.

Each Python object is identified by a globally unique identifier, implemented with the UTD class.
‘These identifiers are also used by the Link class to implement crossreferencing between
0b3D

Classes
The ion for a class.
A generic docstring field.
|A dictionary mapping each object to the object's documentation.
The documentation for a function.

The documentation for a module or package.

A base class for encoding the information about a Python object that s necessary | -
to create its documentation.

Webpage Output:
Class Documentation

ﬁ}lass DocMap W‘P
i
i
|
\
|
|

s
Docap

- | A dictionary mapping each object to the object's documentation. Typically, modules or classes are
fure ! added to the DocMap using add, which adds an object and everything it contains. For example, the
S5es i following a ‘map, adds the module " "toit, and
looks up the documentation for "epydoc.epytext.parse”:

b || >>> docmap = pocMap() # construct a docmap
| | >>> docmap.add(epydoc. epytext) # Add epytext to it

i | | >>> docmap|epydoc.epytext.parse] # Look up epytext.parse
3 | | <Funcpoc: epydoc. epytext [E) 1 ions)>

Method Summary
init_(self, verbosity, document bases,
Gocument_autogen_vars, inheritance groups, inherit groups)
Create a new empty i
3] Objboc| _getitem (self, key) ot
Return the documentation for the given obiect: or the obiect identified by key.if | -/

Webpage Output:
Function Documentation

parse(docstring, markup="

Parse the given docstring, and use it to construct a If any fatal
ParseExroxs are encountered while parsing the docstring, then the docstring will be
rendered as plaintext, instead.

Parameters:

docstring - The docstring 1o encode.

(type=string)
markup - The name of the markup language that is used by the docstring. If the
markup language is not supported, then the docstring will be treated as plaintext.
‘The markup name is case-insensitive.

(type=string)
errors - A list where any errors generated during parsing will be stored. If no
st is specified, then fatal errors will generate exceptions, and non-fatal errors
will be ignored.

(type=1ist of ParseError)

Returns:

ParsedDocstring that encodes the contents of docstring.
(type=Parsedbocstring

ses:
ParseError - If errors is None and an error is encountered while parsing.

Docstring Markup

¢ Why use markup in docstrings?
¢ More expressive power
¢ Display medium independence

* Epydoc supports 4 markup languages:
* Epytext e Javadoc
¢ reStructuredText ¢ Plaintext

e Markup language declaration:
__docformat__ = “restructuredtext”

Docstring Markup: Epytext

* A lightweight markup language
¢ Easy to write
¢ Easy to read as plaintext
¢ Easy to understand
* A conservative markup language
Uses common conventions for basic formatting.

If encounters unknown formatting, it falls back to
verbatim plaintext.

Works well with docstrings that were written in
plaintext.

¢ The default markup language

Docstring Markup:
reStructuredText

¢ An “easy-to-read, what-you-see-is-what-you-get”
markup language
¢ Supports a large (and growing) number of
constructions
¢ Quickly becoming a standard markup language
for Python documentation
* Currently used for PEPs

¢ Might be used for the standard library reference
documentation in the future.

Fields

e A “tagged” portion of a docstring that
describes a specific property of an object.

¢ Descriptions of parameters & return values
¢ Information about how objects are organized
¢ Metadata about objects

¢ Why use fields?
¢ Specialized presentation
¢ Specialized processing

Fields:
Signature Specification

¢ Describe individual function/method parameters.
¢ Specify a function/method’s type signature.

@param p: ... Describes parameter p

@return: ... Describes of the return value
@kwparam p: ... Describes keyword param p
@type p: ... Parameter p’s type

@returntype: ... The return value’s type

@raise e: ... Conditions that cause an exception

Fields:
Variable Documentation

¢ Describe variables & specify their types
* Variables can’t define docstrings.

@varv: ... Describes module variable v
@ivar v: ... Describes instance variable v
@cvar y: ... Describes class variable v
@type v: ... Variable v’s type

¢ In the works:

¢ Read pseudo-docstrings for variables (from string
literals or specially marked constants).

Fields:
Content Organization

* Specify how objects are organized.

Defines a named collection of
related objects.

@group g: ¢, ..., C

n

@sort: ¢y, ..., C Specifies the order in which

objects should be listed

n

@undocumented: ¢ Indicates that an object should
not be listed in the documentation

Fields:
Metadata & Tagged Information

¢ Describe specific aspects of an object.
* Consistent presentation of information
¢ Automatic processing (e.g. creating a bug index)

@seealso: ... @author: ...
@bug: ... @version: ...
@todo: ... @depreciated: ...
@warning: ... @copyright: ...
@license: ... @precondition: ...

etc.

Fields: Create Your Own!

* Epydoc provides two mechanisms for
defining new fields:
¢ A special field:
@newfield tag: label [, plural-label]
* A module-level variable:
__extra_epydoc_fields__=[
(tag [, label [, plural-label]])
1

Extracting Documentation

* Two prevalent methods for extracting API
documentation from Python:
o Inspection: Import the library, and examine each
object’s attributes directly.
>>> import zipfile
>>> docstring = zipfile.__doc__
>>> ...
* Source code parsing: Parse the library’s source code,
and extract relevant information.
>>> sourcecode = open(‘zipfile.py’).read()
>>> ast = parser.suite(sourcecode)
>>> ...

Extracting Documentation:
Limitations of Parsing

* Can’t capture the effects of dynamic
transformations
* Metaclasses
¢ Namespace manipulation
e Can’t document non-python modules
¢ Extension modules
¢ Javadoc modules
¢ Non-python base classes for python modules

Extracting Documentation:
Limitations of Inspection

¢ Some information is unavailable via inspection:
¢ What module defines a given function?
¢ Which objects are imported vs defined locally?
¢ E.g., integer constants
¢ Pseudo-docstrings for variables.
e Can’t document “insecure” code
e Can’t document modules that perform complex
or interactive tasks when imported
¢ E.g., opening a Tkinter window

Extracting Documentation

¢ Epydoc’s answer: use a hybrid approach!
¢ Inspection forms the basis for documentation
extraction

¢ Inspection gives a more accurate representation of the
user-visible behavior.

¢ Source code parsing is used to overcome the
limitations of inspection, where necessary.
¢ Using this hybrid approach, Epydoc can
generate comprehensive API documentation
for almost any libraries.

Thank you!

ed@loper.org
http://epydoc.sourceforge.net/

