
NLTK:
The Natural Language Toolkit

Edward Loper

Natural Language Processing

• Use computational methods to process
human language.

• Examples:
• Machine translation
• Text classification
• Text summarization
• Question answering
• Natural language interfaces

Teaching NLP

• How do you create a strong practical
component for an introductory NLP course?
• Students come from diverse backgrounds (CS,

linguistics, cognitive science, etc.)
• Many students are learning to program for the first time.
• We want to teach NLP, not programming.

• Processing natural language can involve lots of low-
level “house-keeping” tasks

• Not enough time left to learn the subject matter itself.
• Diverse subject matter

NLTK: Python-Based
NLP Courseware

• NLTK: Natural Language Toolkit
• A suite of Python packages, tutorials, problem sets, and

reference documentation.
• Provides standard data types and interfaces for NLP tasks.

• Development:
• Created during a graduate NLP course at U. Penn (2001)
• Extended & redesigned during subsequent semesters.
• Many additions from student projects & outside contributors.

• Deployment:
• Released under GPL (code) and creative commons (docs).
• Used for teaching intro NLP at 8 universities
• Used by students & researchers for independent study

• http://nltk.sourceforge.net

NLTK Uses
• Course Assignments:

• Use an existing module to explore an algorithm or
perform an experiment.

• Combine modules to form a complete system.
• Class demonstrations:

• Tedious algorithms come to life with online
demonstrations.

• Interactive demos allow live topic exploration.
• Advanced Projects:

• Implement new algorithms.
• Add new functionality.

Design Goals

Requirements
• Ease of use
• Consistency
• Extensibility
• Documentation
• Simplicity
• Modularity

Non-requirements
• Comprehensiveness
• Efficiency
• Cleverness

Why Use Python?
• Shallow learning curve
• Python code is exceptionally readable

• “Executable pseudocode”
• Interpreted language

• Interactive exploration
• Immediate feedback

• Extensive standard library
• Light-weight object oriented system

• Useful when it’s needed
• But doesn’t get in the way when it’s not

• Generators make it easy to demonstrate algorithms
• More on this later.

Design Overview
• Flow control is organized around NLP tasks.

• Examples: tokenizing, tagging, parsing
• Each task is defined by an interface.

• Implemented as a stub base class with docstrings
• Multiple implementations of each task.

• Different techniques and algorithms
• Different algorithms

• Tasks communicate using a standard data type:
• The Token class.

Pipelines and Blackboards

• Traditionally, NLP processing is described using
a transformational model: “The pipeline”
• A series of pipeline stages transforms information.

• For an educational toolkit, we prefer to use an
annotation-based model: “The blackboard”
• A series of annotators add information.

Shrubberies are my trade.

The Pipeline Model

• A series of sequential transformations.
• Input format ≠ Output format.
• Only preserve the information you need.

Shrubberies
are

my
trade

Noun
ShrubberiesVerb

are Adj
my Noun

trade

S
 VP

NP V NP

Shrubberies are my trade

TokenizerTaggerParser

The Blackboard Model

• Task process a single shared data structure
• Each task adds new information

Shrubberies are my trade
 Noun Verb Adj Noun

 S
 NP VP

 NP

To
ke

niz
er

 T
ag

ge
r

 P

ars
er

Advantages of the Blackboard
• Easier to experiment

• Tasks can be easily rearranged.
• Students can swap in new implementations that

have different requirements.
• No need to worry about “threading” info through

the system.
• Easier to debug

• We don’t throw anything away.
• Easier to understand

• We build a single unified picture.

Tokens
• Represent individual pieces of language.

• E.g., documents, sentences, and words.
• Each token consists of a set of properties:

• Each property maps a name to a value.
• Some typical properties:

TEXT Text content WAVE Audio content
POS Part of speech SENSE Word sense
TREE Parse tree WORDS Contained words
STEM Word stem

Properties
• Properties are not fixed or predefined.

• Consenting adults.
• Dynamic polymorphism.

• Properties are mutable.
• But typically mutated monotonically. I.e., only add

properties; don’t delete or modify them.
• Properties can contain/point to other tokens.

• A sentence token’s WORDS property
• A tree token’s PARENT property.

Locations:
Unique Identifiers for Tokens

• How many words in this phrase?

An African swallow or a European swallow.
a) 5 b) 6 c) 7 d) 8

Locations:
Unique Identifiers for Tokens

• How many words in this phrase?

An African swallow or a European swallow
a) 5 b) 6 c) 7 d) 8

1 2 3 4 5 6 7

1. An
2. African
3. swallow
4. or
5. a
6. European
7. swallow

Locations:
Unique Identifiers for Tokens

1. An
2. African
3. swallow
4. or
5. a
6. European

• How many words in this phrase?

An African swallow or a European swallow
a) 5 b) 6 c) 7 d) 8

1 2 3 4 5 6 3

Locations:
Unique Identifiers for Tokens

• How many words in this phrase?

An African swallow or a European swallow

• Need to distinguish between an abstract piece
of language and an occurrence.

• Create unique identifiers for Tokens
• Based on their locations in the containing text.
• Stored in the LOC property

Specialized Tokens

• Use subclasses of Token to add
specialized behavior.

• E.g., ParentedTreeToken adds…
• Standard tree operations.

• height(), leaves(), etc.
• Automatically maintained parent pointers.

• All data is stored in properties.

Task Interfaces
• Each task is defined by an interface.

• Implemented as a stub base class with docstrings.
• Conventionally named with a trailing “I”
• Used only for documentation purposes.

• All interfaces have the same basic form:
• An “action” method monotonically mutates a token.

class ParserI:
def parse(token):

”””
A processing class for deriving trees that …
”””

Variations on a Theme
• Where appropriate, interfaces can define a set of

extended action methods:
• action() The basic action method.
• action_n() A variant that outputs the n best

solutions.
• action_dist() A variant that outputs a probability

distribution over solutions.
• xaction() A variant that consumes and

generates iterators.
• raw_action() A transformational (pipeline)

variant.

Building Algorithm Demos

• An example algorithm: CKY
 for w in range(2, N):

for i in range(N-w):
for k in range(1, w-1):

if A→BC and B→α∈chart[i][i+k] and C→β∈chart[i+k][i+w]:
chart[i][i+w].append(A→BC)

• How do we build an interactive GUI demo?
• Students should be able to see each step.
• Students should be able to tweak the algorithm

Building Algorithm Demos:
Generators to the Rescue!

• A generator is a resumable function.
• Add a yield to stop the algorithm after each step.
 for w in range(2, N):

for i in range(N-w):
for k in range(1, w-1):

if A→BC and B→α∈chart[i][i+k] and C→β∈chart[i+k][i+w]:
chart[i][i+w].append(A→BC)
yield A →BC

• Accessing algorithm state:
• Yield a value describing the state or the change
• Use member variables to store state (self.chart)

Example: Parsing

• What is it like to teach a course using NLTK?
• Demonstration:

• Two kinds of parsing
• Two ways to use NLTK

A) Assignments: chunk parsing
B) Demonstrations: chart parsing

Chunk Parsing
• Basic task:

• Find the noun phrases in a sentence.
• Students were given…

• A regular-expression based chunk parser
• A large corpus of tagged text

• Students were asked to…
• Create a cascade of chunk rules
• Use those rules to build a chunk parser
• Evaluate their system’s performance

Competition Scoring

Chart Parsing

• Basic task:
• Find the structure of a sentence.

• Chart parsing:
• An efficient parsing algorithm.
• Based on dynamic programming.

• Store partial results, so we don’t have to recalculate them.

• Chart parsing demo:
• Used for live in-class demonstrations.
• Used for at-home exploration of the algorithm.

Conclusions

• Some lessons learned:
• Use simple & flexible inter-task communication

• A general polymorphic data type
• Simple standard interfaces

• Use blackboards, not pipelines.
• Don’t throw anything away unless you have to.
• Generators are a great way to demonstrate

algorithms.

Natural Language Toolkit
• If you’re interested in learning more about NLP,

we encourage you to try out the toolkit.
• If you are interested in contributing to NLTK, or

have ideas for improvement, please contact us.
• Open session: today at 2:15 (Room 307)

URL: http://nltk.sf.net
Email: ed@loper.org

sb@unagi.cis.upenn.edu

