
Epydoc: API Documentation Extraction in Python

Edward Loper

Department of Computer and Information Science

University of Pennsylvania, Philadelphia, PA 19104-6389, USA

Abstract

Epydoc is a tool for generating API documentation
for Python modules, based on their docstrings. It
supports several output formats (including HTML
and PDF), and understands four different markup
languages (Epytext, Javadoc, reStructuredText, and
plaintext). A wide variety of fields can be used to
supply specific information about individual objects,
such as descriptions of function parameters, type sig-
natures, and groupings of related objects.

1 Introduction

Documentation is a critical contributor to a library’s
usability. Thorough documentation shows new users
how to use a library; and details the library’s specific
behavior for advanced users. Most libraries can ben-
efit from three different types of documentation: tu-

torial documentation, which introduces new users to
the library by showing them how to perform typical
tasks; reference documentation, which explains the li-
brary’s overall design, and describes how the different
pieces of the library fit together; and API documenta-

tion, which describes the individual objects (classes,
functions, variables, etc.) that are defined by the li-
brary.

Since API documentation describes individual ob-
jects, it is tightly coupled to the library’s code. As
a result, it can be difficult to ensure that the exter-
nal API documentation is kept up-to-date whenever
the code is changed. Python provides an elegant so-
lution to this problem: docstrings. A docstring is
a string constant that appears at the top of an ob-
ject’s definition, and is available via inspection. By
using docstrings to document a library’s API, we can
significantly increase the chances that the code and
documentations will be kept in sync.

Docstrings are typically accessed via the pydoc li-
brary, which converts a library’s docstrings into man-
page style output; or via direct inspection. However,
these two methods have a number of limitations:

• All API documentation must be written (and
read) in plaintext.

• There is no easy way to navigate through the
API documentation.

• The API documentation is not searchable.

• A library’s API documentation cannot be viewed
until that library is installed.

• There is no mechanism for documenting vari-
ables.

• There is no mechanism for “inheriting” docu-
mentation (e.g. in a method that overrides its
base class method). This can lead to dupli-
cation of documentation, which can often get
out-of-sync.

Epydoc is a tool that automatically extracts a li-
brary’s docstrings, and uses them to create API doc-
umentation for the library in a variety of formats.
Epydoc addresses all of these limitations:

• Docstrings can be written in a variety of markup
languages, including reStructuredText and Javadoc.
These markup languages allow docstrings to in-
clude non-plaintext content, such as tables, sym-
bols, and images.

• Epydoc’s HTML output makes API documen-
tation easy to navigate.

• Once the documentation has been converted to
HTML or PDF, it can be indexed and searched
using existing tools.

• Epydoc uses special markup “fields” to let a
user document individual variables.

• Epydoc provides both explicit and automatic
methods for documentation inheritance.

1

Figure 1: The Epydoc GUI

2 Using Epydoc

2.1 The Command-Line Interface

To generate the HTML documentation for a library,
simply run epydoc with a list of packages or modules
in the library:

% epydoc ~/programming/epydoc/

Importing 20 modules.

[....................]

Building API documentation for 20 modules.

[....................]

Writing HTML docs (108 files) to ’html/’.

[0%]

[56%]

A variety of flags can be used to customize the
output and change the output format. Run epydoc

--help for a brief list, or see the epydoc(1) manpage
for more complete information.

2.2 The Graphical Interface

Epydoc also provides a graphical interface (Figure 1)
for users who prefer not to use command-line inter-
faces (e.g., Windows users). Currently, the graphical
interface only supports HTML output; but we plan
to add support for other output formats in the future.

3 Epydoc Output

Currently, epydoc supports two basic output formats:
HTML and LaTeX; and three output formats derived
from the LaTeX output: PDF, PS, and DVI.

Module Page Contents

Module description
Module metadata (author, etc.)
Sub-modules
Class summary
Exception summary
Function summary
Variable summary
Function details
Variable details

Figure 2: HTML Output – Module Page Contents.
This table lists the sections that is included in a mod-
ule’s documentation page. All sections are omitted
when empty.

3.1 HTML Output

Epydoc’s HTML output is based on Javadoc and Doxy-
gen, and should be familiar to anyone who has used
those tools [3, 1].

3.1.1 Object Documentation Pages

A separate page is used to document each module
and class. Each page begins with a general descrip-
tion taken from the module or class’s docstring; and
is followed by a description of each contained object.
Figures (2) and (3) list the sections that can be in-
cluded on each documentation page. The “summary”
sections contain tables that provide a brief descrip-
tion of each object, and a link to its detailed descrip-
tion. The “details” selections contain full descrip-
tions of each object. Figures (4), (5), and (6) list the
contents of each entry in the details sections.

3.1.2 Navigation

In addition to the links within the documentation
pages, Epydoc provides two tools for navigating the
API documentation: a frames-based table of contents
and a navigation bar.

The table of contents is shown on the left of Figure
(7). It consists of two frames on the left of the page
that can be used to quickly navigate to any object’s
documentation. The project contents frame contains
a list of all packages and modules that are defined
by the project. Clicking on an entry will display its
contents in the module contents frame. Clicking on a
special entry, labeled ”Everything,” will display the
contents of the entire project. The module contents

frame contains a list of every submodule, class, type,
exception, function, and variable defined by a module

2

Class Page Contents

Base Tree
Known Subclasses
Class description
Class metadata (author, etc.)
Method summary
Property summary
Instance variable summary
Class variable summary
Method details
Property details
Instance variable details
Class variable details

Figure 3: HTML Output – Class Page Contents. This
table lists the sections that is included in a class’s
documentation page. All sections are omitted when
empty.

Function Details Contents

Function description
Parameter types and descriptions
Return value type and description
Exceptions raised
Function metadata (author, etc.)

Figure 4: HTML Output – Function Details Con-
tents. This table lists the information that is included
in a function or method’s entry in a details section.
All sections are omitted when empty.

Variable Details Contents

Variable description
Type
Value

Figure 5: HTML Output – Variable Details Contents.
This table lists the information that is included in a
variable or method’s entry in a details section. All
sections are omitted when empty.

Property Details Contents

Property description
Accessor methods

Figure 6: HTML Output – Property Details Con-
tents. This table lists the information that is included
in a property or method’s entry in a details section.
All sections are omitted when empty.

Figure 7: Epydoc HTML Output

or package. Clicking on an entry will display its docu-
mentation in the API documentation frame. Clicking
on the name of the module, at the top of the frame,
will display the documentation for the module itself.

The navigation bar is shown at the top of the ob-
ject documentation page in Figure (7). It provides
quick links to all top-level pages and a “bread-crumb
trail” of pointers to containing objects. It also in-
cludes a toggle which can be used to hide and show
private objects1; and a toggle which can be used to
turn the frames-based table of contents on or off.

3.1.3 Other Pages

The Trees page, available from the navigation bar,
displays the library’s module and class hierarchies.
The Index page provides a variety of indices, includ-
ing an identifier index; a todo index; and a definition
index (for definitions explicitly tagged by markup).
The Help page provides a quick tutorial describing
how to use Epydoc’s HTML output.

3.2 LaTeX Output

Epydoc can generate LaTeX output, which can then
be automatically converted into PDF or PS2. The La-
TeX output contains a single chapter for each pack-
age or module in the library. Classes, functions, and
variables are included as sections with their contain-
ing modules’ chapters. Figure 8 lists the sections that
can be included in each module’s chapter.

1In Python, private objects are defined as objects whose

name starts with an underscore, but do not end with an un-

derscore. For example, coconut and log are private names;

but init is not.
2assuming that latex, dvips, and ps2pdf are installed

3

Module Chapter Contents

Module description
Module metadata (author, etc.)
Table of sub-modules
Function details
Variable details
Class sections
• Base tree
• Class summary
• Method details
• Property details
• Instance variable details
• Class variable details

Figure 8: LaTeX Output – Module Chapter Con-
tents. This table lists the sections that is included in
the chapter documenting a module. All sections are
omitted when empty.

When the LaTeX output is generated, each mod-
ule’s documentation is written to a separate file. This
makes it easy to include one or more module’s API
documentation as a chapter or section in other LaTeX
documents (e.g., as an appendix to reference docu-
mentation). If you want to include API documenta-
tion for select classes, you can use the --separate-

classes switch to tell epydoc to write each class’s
documentation to a separate file.

3.3 Manpage Output

We are currently working on adding manpage-style
output. These manpages could be viewed interac-
tively (similarly to pydoc) or written to manpage files
(similarly to Tk’s API manpages).

4 Docstring Markup

By using a markup language to write docstrings, pro-
grammers can create API documentation that is eas-
ier to read. For example, the programmer can use
lists, tables, symbols, and images to document their
code. Furthermore, paragraphs can be re-wrapped
for display on a variety of display sizes (ranging from
large monitors to small PDAs).

4.1 Markup Languages

Epydoc currently supports three markup languages
for docstrings (in addition to plaintext):

• Epytext, a lightweight markup language that’s
easy to write and to understand. [2]

• ReStructuredText, an ”easy-to-read, what-
you-see-is-what-you-get plaintext markup syn-
tax.” It is more powerful than epytext (e.g., it
includes markup for tables and footnotes); but
it is also more complex, and sometimes harder
to read. [4]

• Javadoc, a documentation markup language
that was developed for Java. It consists of HTML,
augmented by a set of special tagged fields. [3]

The markup language used in a module’s doc-
strings is specified by the docformat variable, which
should contain the name of a markup language, op-
tionally followed by a language code (such as en for
English). Conventionally, the docformat vari-
able definition immediately follows the module’s doc-
string.

4.2 Fields

Using a markup language to write docstrings allows
us to write specialized fields that describe specific
properties of a documented object. For example,
fields can be used to define the parameters and re-
turn value of a function; the instance variables of a
class; and the author of a module. Each field consists
of a tag, an optional argument, and a body. The next
page contains a list of the fields currently supported
by epydoc. (All fields are shown in epytext markup;
other markup languages have different ways to mark
fields.)

A library writer can also define new information
fields, using the deffield field or the special module-
level extra epydoc fields .

4

Functions and Methods

@param p : ... A description of the parameter p
@type p : ... The expected type for p .
@return: ... The return value.
@rtype: ... The type of the return value.
@kwparam p : ...A description of the keyword pa-

rameter p .
@raise e : ... A description of the circum-

stances under which exception e

is raised.

Variables

@ivar v : ... A description of the instance
variable v .

@cvar v : ... A description of the class vari-
able v .

@var v : ... A description of the module vari-
able v .

@type v : ... The type of the variable v .

Content Operations

@group g :

c1, . . . , cn

Organizes a set of related objects
into a group. g is the name
of the group; and c1, . . . , cn are
the names of the objects in the
group.

@undocumented:

c1, . . . , cn

Specifies a list of objects that
should not be mentioned in the
API documentation.

Summarization

@summary: ... A summary description for
an object. This description
overrides the default summary
(which is constructed from the
first sentence of the object’s
description).

@include: o Copy the contents of object o’s
docstring into this docstring.

Notes and Warnings

@warning: ... A warning about an object.
@bug: ... A description of a bug.
@note: ... A note about an object.
@attention: ...An important note.

Related Topics

@see: ... A description of a related topic,
often including a cross-reference
link.

Status

@version: ... The version of an object.
@todo: ... A planned change to an ob-

ject.
@depreciated: ... Indicates that an object is de-

preciated. The body of the
field describe the reason why
the object is depreciated.

@since: ... The date or version when an
object was first introduced.

@status: ... The current status of an ob-
ject.

Formal Conditions

@requires: ... A requirement for using an
object.

@precondition: ...A condition that must be true
before an object is used.

@postcondition: ...A condition that is guaran-
teed to be true after an object
is used.

@invariant: ... A condition which should al-
ways be true for an object.

Bibliographic Information

@author: ... The author(s) of an object.
Multiple author fields may
be used if an object has mul-
tiple authors.

@organization: ...The organization that created
or maintains an object.

@copyright: ... Copyright information about
an object.

@license: ... Licensing information about
an object.

@contact: ... Contact information for the
author or maintainer of a
module, class, function, or
method. Multiple contact

fields may be used if an ob-
ject has multiple contacts.

5

5 Design Issues

5.1 Parsing vs Inspection

Epydoc primarily uses inspection to extract informa-
tion about the libraries it documents. However, in-
spection has some significant limitations:

• Some information is not available via inspec-
tion. For example, Python does not keep track
of what module a function was defined in; which
variables were imported; and the class where
nested classes are defined.

• Variables do not have docstrings.

• Some libraries use advanced (“magic”) techniques
to manipulate import mechanisms; and these
techniques may interfere with inspection.

One alternative is to skip inspection altogether,
and extract documentation from parsing. This is the
technique used by most non-python API documenta-
tion extraction tools. However, Python presents some
unique challenges to parsing:

• Many important modules are not written in
Python.

• Python is an extremely flexible language, allow-
ing the user to manipulate almost every aspect
of execution. As a result, it is extremely dif-
ficult to robustly determine the set of objects
that are visible in Python from a simple parse
tree.

Epydoc has therefore elected to use a hybrid ap-
proach: inspection forms the basis for documenta-
tion; but parsing is used to overcome the limitations
of inspection, where necessary.

References

[1] The doxygen homepage.
http://www.doxygen.org/.

[2] The epytext markup language.
http://epydoc.sourceforge.net/epytext.

html.

[3] The javadoc homepage.
http://java.sun.com/j2se/javadoc/.

[4] The restructuredtext homepage.
http://docutils.sourceforge.net/rst.html.

6

