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Abstract

People often want to search a large number of articles, web pages, or other natural-
language documents to find the answers to specific questions. Currently, the best
techniques for performing such searches treat each document as an unordered col-
lection of words, and disregard any information about how the words relate to each
other. Although this approach has been quite successful, it has a number of funda-
mental limitations. In order to explore the potential benefit of using more advanced,
linguistically-motivated techniques, I built SQUIRE, a Semantic Question-answering
Information Retrieval Engine. SQUIRE uses a number of independent transforma-
tions to process individual sentences, converting them into sets of semantic relation-
ships. It can then search those semantic relationships in response to a user’s question.
SQUIRE significantly out-performs traditional IR techniques in the task of returning
the individual sentences that answer a question.
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Chapter 1

Introduction

1.1 Searching Natural Language Databases

People often want to search a large natural-language reference source, such as an
encyclopedia, to find the answers to specific questions. However, finding these answers
can be a daunting task. Even when it is relatively certain that the answer is contained
somewhere in the reference, it may not be apparent where the answer is stored. It
is especially difficult to find answers in references that are large, that contain a wide
variety of information, and that do not have well-defined organizations.

An example of a reference source with all of these properties is the World Wide
Web. In general, it is very difficult to extract specific information from the web, since
it is such a large, varied, and unorganized source of data. Other examples include

news wires, scientific journals, and encyclopedias.

1.1.1 Traditional Information Retrieval Techniques

The task of automatically searching a large reference for answers to a specific ques-
tion is known as information retrieval (IR). Information retrieval systems can be
classified by what types of answers they return, and by how they process queries to
arrive at those answers.

Traditional IR systems divide reference sources into sets of articles, or small (100-
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5,000 word) self-contained documents, each of which discusses a specific topic. Given
a question, they will return the set of articles which they find most likely to contain
the answer to that question. To decide which articles answer a question, they model
the question and all the articles in the database as unordered “bags of words.” They
then return the articles whose “bags of words” are most similar to the question’s.

This approach is exemplified by the SMART IR system [23].

1.1.2 Limitations of Traditional Information Retrieval

Although the traditional IR approach has been very successful, it has a number of

important limitations.

1. By treating a document as an unordered set of words, the traditional IR ap-
proach throws away all information about how the words relate to each other.
As a result, it will return documents that don’t answer the question but that
have similar word content. A few examples of phrases which have different

meanings but similar word content are:

The man ate the dog The dog ate the man
The meaning of life A meaningful life
The bank of the river The bank near the river

2. The set of words used to answer a question are not necessarily the same as those
used to ask it. As a result, the traditional approach will fail to return documents
that answer the question using different words than the question itself. For
example, the following pairs of questions and answers use very different words:

e What color is the sky?
When viewed from the surface of the earth, the atmosphere looks pale blue.

e Which European discovered America?
Columbus found the New World in 1492.

e What do pigs eat?
Hogs feed on corn.

11



3. Individual sentences contain only a few words, and use pronouns and other
devices to refer to previously mentioned concepts. In fact, the word content
of a question is very rarely similar to the word content of the sentence that
answers it. This exacerbates the first two problems, and means that traditional
IR techniques are very poor at deciding which sentence or paragraph from an
article answers a question. For example, a traditional IR system would have no
hope of discovering the following answers for questions, since they make only

implicit reference to the objects in question:

e Who invented basketball?
It was initially conceived of by James Naismith.

e How many people live in Washington, D.C.?
The city has a population of 600,000 people.

e What is grown in the Dominican Republic?
The fertile ground is farmed to produce oranges and rice.

These limitations are all fundamental consequences of the fact that traditional
IR techniques treat queries and documents as unordered sets of words. In order to
overcome them, information about the structure of the documents and queries must

be extracted and stored.

1.1.3 Semantic Information Retrieval

Intuitively, we would like to be able to index all of the “knowledge” from a reference
source. Questions could then be turned into “knowledge templates,” that could be
matched against the indexed knowledge. However, before we can construct such an

index, we must answer three related questions:

1. How should we represent knowledge and questions?
2. How can we extract that representation from a reference source or a question?

3. How can we index and efficiently search the knowledge we extract?

12



Representation

Since sentences are, in a sense, the basic unit of knowledge, each sentence should
have its own representation. Each sentence could be represented with a single complex
structure, or with a set of several simpler structures. Larger structures tend to capture
more information about the original content of the sentence, while simpler structures
are usually easier to index and search.

Most semantically based information retrieval systems represent articles and ref-
erences as unordered sets of sentences [12, 2], and do not encode information about
how those sentences relate to each other.

The knowledge representation should optimally satisfy the following properties:

e Canonical Representation: Two different sentences with the same basic

meaning should have the same representation.

e Generalization: If one sentence implies another, then the knowledge repre-
sentation of the first should either be contained in the second, or be derivable

by the retrieval algorithm.

Assuming that the knowledge representation satisfies these properties, we can
simply represent questions as partial sentences, or as sentences with variables in them.
Note, however, that if the knowledge representation is a complex, nested structure,
then deciding which sentences answer a question may require individually processing

each sentence in the database.

Parsing

Parsing is the process of constructing the representation that corresponds to a sen-

tence. There are two basic approaches to parsing a sentence:

e In Deep Parsing, the sentence is first converted into a linguistically motivated
tree-shaped structure. This structure explicitly encodes how different parts of

the sentence relate to each other, and removes most ambiguity from the original

13



sentence. This structure is then used to construct a knowledge representation

of the sentence.

e In Surface Parsing, the sentence is treated as a sequence of words, and the
knowledge representation is constructed directly from this sequence. Usually,
this construction involves matching sequences of parts of speech against the
sentence [12]. For example, if a surface parser encounters an adjective followed

by a noun, it will encode the adjective as a modifier of the noun.

Indexing and Retrieval

The representations of a reference source’s sentences must be indexed in such a way
that they can be efficiently searched. In particular, searching the index should not
require that a question be compared to every sentence. This can be a problem for
complex knowledge representations, since it is hard to index them such that they will
be returned for just those questions that they answer.

For that reason sentences are usually broken up into sets of simple structures,
which are indexed separately. To find the answers to a question, the index is searched
for structures that match the question’s structures. The source sentences of these
matching structures are then returned as possible answers to the question. Source
sentences that contain more matching structures are rated as more likely to be correct

answers. This process is illustrated in Figure 1-1.

1.2 Overview

Although semantic information retrieval techniques have always seemed very promis-
ing, traditional techniques have continually out-performed them [28, 2]. In order to
explore the limitations and the potential of semantic IR techniques, I designed and
built SQUIRE, a Semantic Question-Answering IR Engine. SQUIRE uses deep pars-
ing techniques to convert sentences into sets of simple structures, representing the
individual semantic relationships that comprise them. These relationships are then

separately indexed in a database. When the user asks SQUIRE a question, SQUIRE
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Ouestion Source Sentences _[Score

Who thinks Mary hit Bill e B e[
someone thinks something John saw something - Mary hit Bill
Mary hit Bill

Bill thinks Mary hit Bill 2
Bill thinks something

Mary hit Bill

Bill hit someone = Joe thinks Bill hit someonqd 1
KRR Joe thinks something
Joe saw something b, %, -+ Bill hit someone

s, Joesaw Bill hit someone |0
= Joe saw something
-+ Bill hit someone

Figure 1-1: An example of sentence retrieval in a system where sentences are indexed
as simple structures. In this case, the sentence is reduced to subject-verb-object
triples. The question is first broken into two relations. Those relations are then
looked up in the index, and the sentences which contain them are returned.

converts it into a set of semantic relationships, and searches the database for the
sentences which best match those relationships.

This thesis describes the design and implementation of SQUIRE, and examines
its performance using a test set of thirty-eight questions. Chapter 2 provides some
background information about traditional information retrieval techniques and about
linguistics. Chapter 3 describes the specific problem that SQUIRE tries to solve,
and the properties that it should have to solve that problem. Chapter 4 describes
SQUIRE’s design and implementation. Chapter 5 describes the tests I ran to compare
SQUIRE to traditional IR techniques, and discusses the results. Chapter 6 explores

some future directions that the research into Semantic IR might take.
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Chapter 2

Background Information

2.1 Information Retrieval Techniques

Traditional information retrieval systems treat both articles and questions as un-
ordered sets of words. When given a question they return the articles whose repre-
sentative sets of words best match the question’s. Although this general description

is true of most traditional IR systems, it leaves a number of details unspecified:

e What words are put in the unordered sets used to represent articles?
e How does the system decide how well two sets of words “match?”

e Are weights associated with the words in the set? If so, what do they represent?

A number of answers have been given to each of these questions. In the following
sections, I will describe the answers which seem to maximize performance in tradi-
tional information retrieval systems. Most of these techniques have become standard,

and are incorporated into almost every traditional IR system.

2.1.1 Removing Functional Words

Some words give us more information about the semantic content of a sentence than

others. This is important to traditional IR systems, since a word that does not
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convey much semantic content will not be as likely to correlate between questions
and answers. Words can be divided roughly into two classes, based on how well their
presence in a question correlates with their presence in an article that answers the

question:

e Content words, such as “fern,”

carpet,”and “elect” correlate well; if a ques-
tion’s content word is in an article, then we are more likely to believe that the

article answers the question.

e Functional words, such as “of,” “him,” “the,” and “throughout,” do not
correlate well; the presence of a question’s functional word is in an article gives

us no information about whether the article answers the question.

Since functional words do not provide traditional information retrieval techniques
with any information, they are not usually included in the sets of words used to
represent articles and questions; thus, the sets of words that represent articles contain
only content words.

This is usually accomplished by using a stop list, which lists all of the functional
words [27]. Any word in the stop list will not be included in the representation of the
article or question. Note that it is unclear which words should be placed in a stop list,
since some words have intermediate correlation, and many words have correlations
that depend on the domains of the questions and of the articles. For example, when
asking a question about Australia, it would probably be inappropriate to eliminate

Y

the words “down under,” even though they appear in most stop lists.

2.1.2 Stemming

[1r=))

In English, many words in a sentence are given an affix, such as “-s” or “-es” for nouns,

[4

and “-ing” or “-ed” for verbs. However, these affixes are not part of the semantic
content of the word itself. Instead, they give an indication of how the word relates to
other words in the sentence.

It would be unreasonable for traditional IR systems to treat these affixes as part

of the word. If it did, then only those articles whose words contain the same affixes

17



as the question would be returned. For example, it would not return “The cow eats
grass” in response to “what do cows eat,” since the affixes on both “cow” and “eat”
do not match. For this reason, most IR systems use the root words, or stems, to
encode articles and questions, and throw away any affixes. This process is known as
stemming.

However, there are several different types of affixes in English, and it is not
clear that all of them should be discarded. Affixes like “-s” in “cars” and “-ing”
in “walking” serve to modify a basic concept. These are discarded by almost all
stemmers. Affixes like “un-” in “unwanted,” “-ize” in “nationalize,” and “-er” in
“hunter” can fundamentally change the meaning of their stem. Different stemmers
make different decisions about which of these affixes should be kept and which can
be discarded [27, 1].

It is not always clear how to decide what the stem of a word is, even once we
decide what affixes we wish to remove. For example, a stemmer might want to strip
the suffix “-tive” from “administrative” to give “administrate,” but it shouldn’t also
strip the same suffix from “additive” to give “addite” or from “adjective” to give
“adject.”

Most stemmers use a number of heuristics to produce the stems for a words. Typ-
ically, such stemmers have an error rate of about 5% [27]. Another simple approach
is to simply maintain a very large list of every word that we are likely to encounter,
and its stem. The disadvantage of this approach is that it will not stem words that
it has not encountered, most likely including specialized words like “Minke” (a type
of whale). It might be possible to combine these techniques — use a table of stems for
most words, and only revert to the heuristic stemmer for words that are not present

in the table.

Lemmatization

The proper stem for a word is often dependent on how it is used in a sentence. One
technique for improving the performance of stemming is to first derive the part of

speech of the word, and then to use that information to decide what stem the word

18



should be given. This technique is known as lemmatization [2]. In order to find the
part of speech of the words in an article, a statistical algorithm is usually used. One

popular algorithm for finding parts of speech of words is Brill’s Tagger [5].

2.1.3 Weighting

In addition to storing the set of words that comprise an article, almost every informa-
tion retrieval system also assigns a weight to each word [27, 23]. This weight generally
reflects how much that word tells us about the content of the article. The IR system

can then use those weights to decide how well a question matches an article.

Weighting by Frequency in the Article

By reducing an article to a set of words, information about how often a word occurs
in an article is lost. In order to preserve this information, most IR systems use the
weights of the words to reflect their frequency of in an article [27]. Representing this
frequency as an absolute number of occurrences would unfairly give higher weights to
larger articles. Therefore, this frequency is often represented as a percentage of total
number of words in the article. Let f;; be the number of occurrences of word 7 in
document d, and let ng be the number of words in document d. Then w;,4, the weight

of word 7 in document d, is:

Weighting by Inverse Overall Frequency

In general, the more common a word is, the less likely it is to help decide whether an
article is an answer to a question [27]. For example, a question about “heart defibril-
lation” is more likely to be answered by an article containing the word “defibrillation”
than by one containing “heart,” since “defibrillation” is a much less common word
than “heart.” For this reason, many IR systems take into account how common a

word is to decide what weight it should receive. The commonness of a word can be
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measured by its overall frequency in the corpus being indexed. Let N be the number

of documents. Then the commonness of word i, C; € [0, 1] is:

N
0. — i1 Jig
' N

The commonness could also be measured using an independant corpus. Once
the commonness of each word has been defined, we can find the weight of word 7 in

document d:

Other Weighting Schemes

A variety of weighting schemes are possible, which may take into account the fre-
quency of a term, the number of documents it occurs in, and other information. One

commonly used weighting scheme is the Cornell ltc weighting [8]:

(log (fia) + 1) x log (N/my)
JET (105 (F) + 1) x log (V/m1)

where my is the number of documents in which term d appears.

Wiqg =

Weighting by Article Value

Sometimes, it is possible to determine through external means how reliable, informa-
tive, or useful a document is. In this case, we would like to return articles which score
higher on these criteria. One way to accomplish this is to scale the weights of every
term in an article’s representation by an overall measure of the value of the article.
For example, the Google search engine[9] uses the heuristic that pages to which
more people make links are more likely to be useful. They therefore modify the
weights of the articles to reflect this information — articles which more people link to
will be more likely to be returned, and articles that few people link to will be returned

less often [6].
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2.1.4 Vector Space Model

Instead of thinking of an article as a set of weighted word stems, we could think of it
as a mapping from word stems to weights. The weight of any word stem not present
in the article is simply zero. By defining a vector containing all of the word stems in

the corpus:

WORD = (word;y, words, ..., word;, ..., wordy)

we can define the representation of an article or question to simply be the vector:

VVZ' = <’U)Z'1, W;2,y - sz>

where w;q is the weight of word ¢ in document d.

This representation reduces each document to a single high-dimensionality vector.
These vectors are a convenient representation, because they can be manipulated and
reduced using standard linear algebra techniques. For example, since many words
tend to co-vary in articles, we can find a minimal basis for the vector space (i.e., a
minimal set of perpendicular axes that allow us to encode all of the vectors). This
cuts down on the space the vectors take, and on the time it takes to compare them

[27].

2.2 Measuring Information Retrieval Performance

Since the early 1960’s, much research has gone into finding good metrics with which to
measure information retrieval performance [25]. Since then, many alternative metrics
have been proposed[25, 7, 22, 3]. However, only a few have become widely accepted.
Most of the widely accepted metrics are based on the contingency table, which
divides the sentences of the original corpus into four categories, based on whether they

answer the question and on whether they are retrieved in response to the question [27]:
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answers question (A) | doesn’t answer question (A)

retrieved (B) ANB ANB
not retrieved (B) || AN B ANB

Given this table, we can define the two most commonly used metrics, precision
and recall. Precision is the percentage of the responses retrieved that answer the

question. Recall is the percentage of the correct answers that are retrieved:

. |AN B
precision =
B
|AN B
recall = ————
Al

In most information retrieval systems, there is a tradeoff between precision and
recall. In particular, increasing the number of documents returned generally increas-
es recall at the expense of precision, and decreasing the number returned increases
precision at the expense of recall. At the very extremes, returning every document
would give a recall of 1 and a precision of 0; and returning no documents would give
a precision of 1 and a recall of 0.

Although there is a tradeoff between precision and recall, the nature of this tradeoff
varies widely between different IR systems. Because the nature of the tradeoff varies
so widely, it is not clear how to reduce these two quantities to a single value that
indicates the “overall performance” of the system. Therefore, most researchers report
the performance of an IR system using a graph of its precision as a function of its

recall [27].

2.3 Linguistics

Although sentences may seem to simply consist of simple strings of words, linguists
have long recognized that sentences have a much more complex underlying struc-
ture [11, 20]. This structure explicitly indicates how the constituent words of the
sentence relate to each other, and how they combine to give the meaning of the sen-

tence as a whole. In order to get an idea of what a sentence means, and whether
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CP
I
Chbar
I
_
NP I bar
I /\
Nbar Aux VlP
I
N /Vbar\
\Y NP NP
I
Nbar Det Nbar
I I
N
_ I I
John will give Mary a book

Figure 2-1: Example of a syntax tree, for the sentence “John will give Mary a book.”

it answers a question, we will need to extract this underlying structure from the

sequence of words that make up the sentence.

2.3.1 Syntax Trees

Most linguists agree that sentences are best represented by a tree-based structure,
known as a syntax tree [11]. The leaves of a syntax tree are the words of the sentence;
the nodes represent phrases, or groups of words and sub-phrases that combine to

form a single functional unit. An example of a syntax tree is given in Figure 2-1.

Phrases

Each phrase consists of a head, which contains the main semantic idea of the sentence,
and a number of adjuncts, which modify the head in some way. In addition, each
phrase is assigned a type, based on what type of head it has. For example, phrases
headed by nouns are noun phrases (NP), phrases headed by verbs are verb phrases
(VP), and phrases headed by adverbs are adverbial phrases (AdvP). Some example

phrases are given in Figure 2-2.
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windows (Noun Phrase)
the big man that I talked to yesterday (Noun Phrase)
eat the cake (Verb Phrase)
walk to the store to buy groceries (Verb Phrase)
quickly (Adverbial Phrase)

Figure 2-2: Each phrase consists of a head and zero or more arguments. The head
is in bold face, and each argument is underlined. Each of these phrases has a lexical
head (i.e., a head that represents an independent semantic concept).

Prepositional Phrase)
Prepositional Phrase)
Determiner phrase)
Inflection phrase)

to the moon

under the carpet

the man

John will walk the dog

NN SN S

Figure 2-3: Each phrase consists of a head and zero or more arguments. The head
is written in bold face, and each argument is underlined. Each of these phrases
has a functional head (i.e., a head that does not represent an independent semantic
concept).

Heads

Heads can be divided into two classes: lexical heads and functional heads. Lexical
heads represent an independent semantic concept. All of the phrases above have lex-
ical heads [11]. Functional heads are heads which do not represent an independent
semantic concept. Functional heads generally take exactly one adjunct, and serve to
modify that adjunct [11]. Some examples of phrases with functional heads are given

in Figure 2-3

Movement and Traces

Sometimes, the phrases that make up a sentence are moved from their original posi-
tions. For example, consider the following sentences:

(1)  John likes Mary

(2)  Mary is liked
whose syntax trees are shown in Figure 2-4, parts (a) and (b). In both sentences,

“Mary” relates to the verb “to like” in the same way, although in sentence (1) “Mary”

) Wey M

is an adjunct to “likes,” while in sentence (2) “Mary” is an adjunct to “is.
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Linguistic research suggests that, in sentence (2), “Mary” actually originated at
the same position as it did in sentence (1), but was subsequently moved out of this
position [11]. Thus, there are actually two syntax trees corresponding to sentence (2):
a pre-movement tree and a post-movement tree. The post-movement tree is known
as the surface structure of the sentence, since it reflects the ordering of words as
they are pronounced. The pre-movement tree is known as the deep structure of
the sentence, since it more closely reflects the semantic relations that make up the
concept expressed by the sentence.

When a phrase is moved, its original location is marked with a special entity called
a trace. Traces are not directly pronounced, but they can be detected by a number
of means, including monitoring the timing of speech [26]. The displaced phrase is
called the trace’s antecedent. A connection is maintained between a trace and its
antecedent, and the trace and antecedent are said to corefer. Parts (c) and (d) of

Figure 2-4 illustrate the deep structure and the surface structure of sentence (2).

Non-overt Pronouns: PRO

Sometimes, phrases can contain adjuncts which are not pronounced as part of the
sentence, and have no overt marking. Traces are one example of these so-called
empty categories. Another example is PRO, a pronoun which is sometimes implicit
in a sentence [11]. Consider the sentences:

(3)  John wants to eat.

(4)  John is considering whether to talk.

(5)  To run away would be cowardly.

Each of these sentences contains a verb that does not have an overt subject: in
sentence (3), it is the verb “to eat;” in sentence (4), it is the verb “to talk;” and in
sentence (5), it is the verb “to run away.” Each of these verbs actually has a non-overt
pronoun, known as PRO, as its subject. Like traces, PRO is not pronounced. However,
it is present in the syntax tree, and can sometimes be detected by the timing of speech
or by other means [26]. The positions of PRO in sentences (3), (4), and (5) are:

(3')  John wants PRO to eat.
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Ct|>ar : Cliar
IP P
NP Ibar NP Ibar
John VP Mary | VP
| | |
A is \Y
/\ I
\Y% NP \Y
likes Mary liked

Figure 2-4: Illustration of Syntactic Traces. (a) The syntax tree representing the
sentence “John likes Mary.” (b) Simplified version of the syntax tree representing
the sentence “Mary is liked.” This syntax tree does not include traces. (¢) The
deep structure of the sentence “Mary is liked.” This structure encodes the fact that
“Mary” was originally an adjunct of the verb “like.” (d) The surface structure of
the sentence “Mary is liked.” The trace indicates the original position of the noun
phrase “Mary,” and the co-indexing of the trace and the noun phrase indicate that
they corefer. Arrows are also sometimes used to indicate coreference.
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Cblar
IP
NP Ibar
— |
John VP
|
Vbar
/\
Vv P
|
wants PRO Ibar
I VP
| |
to V'’
|
\
|
eat

Figure 2-5: The syntax tree representing the sentence “John wants to eat.” In this
sentence, PRO acts as the subject of the verb “to eat.” PRO is a non-overt pronoun.

(4")  John is considering whether PRO to talk.
(5')  PRO to run away would be cowardly.

The syntax tree for (3) is also given in Figure 2-5.

2.3.2 Arguments and Modifiers

Syntactic phrases can take two distinct types of adjuncts: arguments and modifiers.
Intuitively, arguments are necessary to complete the meaning of the verb, while
modifiers just provide auxiliary information [11]. Consider the verb phrase:

(6)  forcefully gave an apple to Mary on Wednesday

where the head is written in bold face, and each adjunct is underlined. In this phrase,
the adjuncts “an apple” and “to Mary” are arguments, since they complete the mean-
ing of the verb “to give.” In contrast, the adjuncts “forcefully” and “on Wednesday”
are modifiers, since they simply provide auxiliary information. Each head can take a
fixed number of arguments, and the roles that these arguments can fill is dependent

on the head. Most heads take from zero to four arguments, and very few heads take
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more than six.

Another way to the express the difference between arguments and modifiers is
that modifiers always give the same type of auxiliary information, independent of the
head that they are attached to; but the type of information arguments give about the
head depends directly on their head. For example, consider the sentences:

(7)  John watched Mary in the park.

(8)  John greeted Mary in the park.

The semantic role played by the adjunct “Mary” in (7) is very different from its
role in (8). In contrast, the adjunct “in the park” serves the same purpose in both
sentences: it identifies the location of the event being described. Thus, in these
sentences, “Mary” is an argument of its verb, while “in the park” is a modifier.

In addition to the intuitive and functional distinctions between arguments and
modifiers, there are syntactic reasons to believe that they are different. For example,
arguments can receive case, while modifiers can not [11].

The distinction between arguments and modifiers is important when trying to
determine how an adjunct relates to its head. If an adjunct is a modifier, then the
way it relates to its head is implicit in the type of modifier: location modifiers always
specify the location of an event, time modifiers always specify the time of an event,
and size modifiers always specify the size of an object. However, the relation of an
argument to its verb cannot be derived from the argument itself; instead, it must be

explicitly encoded.

2.3.3 Thematic Roles

The most common way of encoding the relation between a head and its arguments
is through the use of thematic roles. Thematic roles, or #-roles, are symbolic
labels for each of the different relations an argument can have with its head. Some
commonly used thematic roles are listed in Figure 2-6.

There has been some dispute about what set of labels should be used for thematic
roles [11]. However, the exact set of labels used is not important to an IR system,

as long as every argument of a head is assigned a unique thematic role. This ensures
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Thematic Role Example

BENEFACTIVE John gave Mary a book.

THEME John gave Mary a book.
EXPERIENCER Murder mysteries please John.
SOURCE John took the book from Mary.
DOMAIN The president of France

THEME proud of the pig

Figure 2-6: Commonly Used Thematic Roles. The argument whose f-role is specified
is underlined, and its head is written in bold face.

that, when two phrases are matched against each other, the proper arguments can be
compared to each other, even if they occur in different positions, as in the following
sentences:

(9)  John gave Mary the ball in the park.

(10) John gave the ball to Mary in the park.

Often, linguists use thematic roles to encode the relationship between a head and
a phrase that is not technically an argument of the head [11, 21]. For example, in the
sentence “John will give the book to Mary,” “John” is said to fill the AGENT thematic
role of “give,” even though it is an argument of “will,” not “give.” Although this
practice of assigning theta roles to phrases that are not arguments is very common,
recent research suggests that it may not accurately reflect the way humans process

language [17].

2.3.4 Alternations

Often, one semantic notion can be expressed using a number of alternations, or
syntactic variants [18, 16, 11]. In this case, the thematic roles assigned to the argu-
ments are the same in each sentence, even though the location of the argument is

different [11]. For example, consider the following sets of sentences:
(11) John gave the ball to Mary.

11") John gave Mary the ball.

11") Mary was given the ball by John.

12) I took John’s hand.
12") I took the hand of John.

~~ ~~
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(13) We threw the ball around in the park.
(13") In the park, we threw around the ball.

In each of these sets of sentences, the same basic idea is expressed, using the
same words, but different word orders are used. In order for a semantic information
retrieval system to successfully decide when a sentence understands a question, it
must be capable of determining which thematic roles should be assigned to which

arguments.

2.3.5 Verb Classes

Many different verbs allow the same types of alternations. For example, the verbs
“throw,” “toss,” and “smash” can undergo many of the same alternations [18]. Build-
ing on this intuition, Beth Levin has found evidence that English verbs can be divided
into a relatively small number of distinct classes, each of which defines which alter-
nations are possible for its verbs [18].

Each of these verb classes specifies a fixed set of thematic roles, which each of
the verbs in the class can take. Additionally, it specifies the alternations which the
verb and its arguments can undergo. A semantic IR system can greatly reduce the
possible ways that the verb’s thematic roles can be assigned to its arguments if it can
decide which class the verb belongs to. Often, this can be accomplished by simply
looking the verb up in a table.

However, a single verb often belongs to multiple verb classes. For example, the
verb “take” most likely belongs to different verb classes in each of the following

sentences:
(14)  John took Mary to the store.
(15)  John took the apple.
(16)  John took a walk along the river.

This multiplicity of verb classes for a single verb occurs most commonly when one
word has multiple meanings. Detecting the correct verb class requires more advanced
techniques than simple table look-up. However, it is possible that the verb class
information itself will actually allow us to disambiguate the verb, if the sentence’s

structure is only consistent with one of its possible verb classes’ alternations.
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Beth Levin restricted her discussion of word classes to verbs. But in principle,
any lexical head can assign a thematic role. The notion of verb classes can be easily
extended to cover all lexical heads. Each lexical head is assigned a semantic class,
which describes the set of thematic roles that the head can assign, and the set of
alternations that it can undergo. Note that words with different parts of speech
might share the same semantic class. For example, it might be reasonable to assign
the same semantic class to “destroy” and “destruction” in the following phrases, since

it assigns the same set of thematic roles to its arguments:
(17) John destroyed the city
(18) John’s destruction of the city

2.3.6 Predicate Logic

The relationships between the heads of a sentence and their adjuncts gives a great
deal of information about the semantic content of the sentence. However, these
relationships alone fail to capture what we think of as the “meaning” of the sentence.
For example, as mentioned above, the subject of a sentence is not an argument of
its verb, even though it clearly serves to complete the meaning of the verb. Another
example of adjunct-level relationships failing to capture what we think of as the
“meaning” of a sentence is the relationship between determiners, such as “every” or
“the,” and the nouns they modify.

One approach to finding all these relations is based on predicate logic [13]. Pred-
icate logic assumes that, to each verb, there corresponds a predicate that describes
that verb. The arguments of the predicate include both the proper arguments of the
verb, and any external arguments, or phrases which serve to complete the meaning
of the verb even though they are not proper arguments. For example, the sentence

“John gave the book to Mary” might be expressed by the predicate:

give(John, book, Mary)

This predicate form is useful for the task of information retrieval, since compar-
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[John] = John

[Mary] = Mary

likes] = Az.\y.likes(y,z)
[likes Mary] = [likes] ([Mary])

(Az.\y.likes(y, z)) (Mary)
= J\y.likes(y, Mary)
[John likes Mary]=  [likes Mary] ([John])
= (My.likes(y, Mary)) (John)
= likes(John,Mary)

Figure 2-7: Example of Fregean Semantic Derivation. This figure illustrates the
Fregean semantic derivation of the predicate corresponding to the sentence “John
likes Mary.” It makes use the [e] operator, which finds the semantic value of any
syntactic phrase. Functions are expressed using lambda-calculus. The first three
lines give the definitions of the values of each of the words in the sentence. Note
that the value of likes is a function. These values are then combined via functional
application to yield the final predicate, likes(John,Mary).

ing the question’s predicate to the predicates of the corpus’s sentences can give us

information about which sentences might answer the question.

2.3.7 Fregean Semantics

A common way of deriving the predicates that describe a sentence is known as
Fregean Semantics, based on the work of Gottlob Frege in the late nineteenth
and early twentieth centuries [13]. Fregean Semantics is based on the notion that
the derivation of predicates from sentences is best modeled with the use of functional
application. Each node in a syntax tree is given a value, which can be an object, a
predicate, or a function. The value of each node is simply derived by applying the
value of the head (which should be a function) to the values of each of the arguments.
As an example, the derivation of the sentence “John likes Mary” is given in Figure 2-7.

Fregean Semantics allows syntactic trees to be compositionally combined to yield
logical expressions containing the predicates that describe the sentences. The types of
transformations allowed by Fregean Semantics can be quite complex, and are powerful
enough to account for many linguistic phenomena, including quantifiers (such as

“every”) and pronouns [13].
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However, a number of obstacles make it difficult to use Fregean systems for infor-
mation retrieval. First, whenever a Fregean system is designed to handle anything
beyond very simple sentence, the functions used to represent words become very com-
plex. Indeed, no one has been able to develop a Fregean system that can can assign
a set of predicates to most English sentences. Second, the Fregean system requires
that each individual word be given its own definition. This fact makes it very difficult
to build a high-coverage Fregean system. Finally, Fregean systems do not have any
method of recovering from inputs that they don’t know how to process. For example,
if a Fregean system is given words that it does not have definitions for, or if words
are used in ways that the system was not designed to handle, the system will simply
fail. Until Fregean analyses of language become more advanced, it will be difficult to

incoroperate them into information retrieval systems.

2.3.8 Semantic Trees

A more practical approach for an information retrieval system might be to use a
hybrid between predicate logic and syntax trees. This hybrid would retain much of
the original structure of the sentence, but would include both internal and external
arguments of a head as its children.

To that end, I propose a simple structure, which I will call a semantic tree. A se-
mantic tree is a tree-structured representation of a sentence, composed of semantic
phrases, where each semantic phrase consists of a single lexical head, its modifiers,
and all of its internal and external arguments. Each of the phrase’s arguments is

labelled with its thematic role. An example semantic tree is given in Figure 2-8.

2.4 START

The design of SQUIRE was heavily influenced by the START system, which answers
questions by comparing them to individual assertions [16, 15]. The START engine
is quite successful at answering questions about a natural language reference source.

It can respond to a wide range of questions about several domains, including MIT’s
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R
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John clown
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tall habpy

Figure 2-8: Semantic Tree for the sentence “I think John likes the tall, happy clown.”
Each semantic phrase consists of a lexical head and its arguments and modifiers.
Arguments are connected with solid lines, labeled by their thematic role. Adjuncts
are connected with dotted lines.

Artificial Intelligence Lab, movies, and world geography [16, 15]. Abstractly, START
works by examining a question and matching it against each declarative sentence that
it has been told. If it finds a sentence that answers the question, it will return that
sentence, and the result of matching the sentence is running the procedure.

Internally, START converts each declarative sentence into one or more links,
each of which encodes a basic relationship from the sentence, in the form of a subject,
relation, and object. For example, the sentence “John eats the green apple” will be
encoded with the links <john, eat, apple-1> and <apple-1, is, green>. These
links are then stored in START’s knowledge database.

When START is given a query, it converts the query into links, and tries to match
these links against those stored in the database. A query link matches a database
link if the database link implies the question link. For example, “John ate an apple”

”

implies that “John ate,” and “John gave Mary the ball” implies that “John gave the
ball to Mary.” If each of the query’s links match a database link, then START uses
them to answer the question. Otherwise, START reports that it doesn’t know the
answer to the question.

If a query link and a database link are identical, then clearly they should match.
However, non-identical links can also match each other, under two circumstances.

First, two different links can encode syntactic alternations of the same form. Second,

the relationship encoded by one link might imply the relationship encoded by another
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link. In either of these cases, the links should match. To handle both of these cases,
START uses S-rules, each of which states that one class of links implies another class
of links. If the application of START’s S-rules to a database link results in a query
link, then the two links match.

2.4.1 The Structure of Links

In order to process sentences, START needs to translate them into a simpler internal
representation. START parses each sentence into links, each of which encodes some
sub-part of the sentence. Currently, each link consists of a relation, a subject, an

object, and a history:

e The relation is usually derived from the main verb of a clause. It is a symbol,

) [4%4 b

such as “eat,” “run,” or “is-a.

e The subject is usually derived from the subject of a clause. It is either a symbol

(usually representing a concrete object) or a link.

e The object is usually derived from a direct object of a clause. Like the subject,

the object can be either a symbol or a link.

e The history contains any other information about the sentence, including ad-

verbs, verb tense, and indirect objects.

Note that START decides what to put in the subject or object positions of links
purely on the basis of their syntactic position. For example, in the sentence “I told
John,” “John” is the object; but in the sentence “I told the fact to John,” “the fact”
is the object. Thus, in different sentences with the same verb, the subject and object
can have very different relations to the verb.

Although the links derived from declarative statements and from questions have
the same general structure, there is an important difference between them: query
links can contain variables, whose values are the answer to the query. For example,

the link representing the question “who does john like?” is <john, like, ?x>, where
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?x is a variable. The variable ?x will match any value, and the answer to the question

will be the value that ?x matches.
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Chapter 3

Exploring Semantic IR

Most researchers agree that it should be possible to use semantic information to
improve the performance of information retrieval systems [12, 28, 2]. However, it is
unclear which of the many possible methods of incorporating semantic information
into an information retrieval system will yield substantial improvements [14, 24]. In
order to explore which of these methods seem most promising, I designed and built
SQUIRE, a Semantic Question-Answering Information Retrieval Engine. SQUIRE
is intended to be a test-bed which can be used to explore the effects of a variety of

semantic improvements to traditional IR systems.

3.1 SQUIRE’s Task

The task I chose for SQUIRE was to find the individual sentences which answer a
natural language question from a large corpus (on the order of 1 million sentences).
The types of questions given to SQUIRE should be specific questions, that can be
answered by single sentences. Some examples of such questions are:

e What do whales eat?

e What is the capital of Norway?

e Where are factories located in Honolulu?

e What are the chief crops grown in Guinea-Bissau?
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e Who invented football?

SQUIRE is not optimized to answer general questions that ask for information about
a single entity, such as:

e Tell me about monkeys.

e What are missionaries?

e Who was Shah Jahan?

Since these questions do not contain any semantic relationships, they would best
be answered using traditional information retrieval techniques. However, ideally,
SQUIRE should perform as well as traditional systems when faced with such ques-
tions.

I chose the task of sentence-level IR because it is a task at which traditional IR
performs poorly, and a task for which semantic IR techniques show promise. Sentence-
based IR is an important task, and is often preferable to article-based IR, since it
is much easier to skim several sentences to find the answer to a question than it
is to skim several articles. Additionally, the cost of returning incorrect sentences is
decreased, since the user can usually determine immediately if a sentence returned
does not answer their question. In contrast, returning incorrect articles often requires
the user to skim most of the article before they can determine that it does not answer

their question.

3.2 Design Criteria

Although precision and recall provide simple metrics for measuring the performance of
a system, there were many other criteria that SQUIRE was designed to satisfy. These
criteria can be divided into properties of the system’s question-answering behavior

(response criteria), and properties of the system itself (system criteria).

3.2.1 Response Criteria

o Wide Coverage: Often, semantic systems are built to perform very well in a

limited domain, but perform poorly outside that domain. However, much of
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the usefulness of information retrieval systems comes from the fact that they
can be applied to novel situations. Although SQUIRE makes use of domain-
specific information, I designed SQUIRE to behave reasonably when operating
outside of known domains, such that it can always perform at least as well as
traditional IR systems. For example, if SQUIRE can’t determine the structure
of a sentence, it still tries to index the constituent pieces that make up the

sentence.

High Precision: The amount of textual information available from electronic
sources, including the Internet, has been increasing at a phenomenal rate for
the past 10 years. The information necessary to answer almost any question is
most likely available from many different sources. But users are usually only
interested in retrieving one, or perhaps a few, answers to a question. Thus, as
the amount of information available grows, precision becomes more important
than recall. I therefore designed SQUIRE to primarily maximize precision, and

only secondarily maximize recall.

Linguistic Normalization: A single idea can be formulated using many different
words and constructs. This linguistic variation can make it difficult to decide
whether a sentence answers a question. This task becomes much easier if all
linguistic variants of the same idea are reduced to a normalized form. I there-
fore designed SQUIRE to detect linguistic variation and produce normalized

representations of its input whenever possible.

Rapid Query Response: It is unreasonable to ask users to wait more than a few
seconds for a response to their question. Since SQUIRE indexes such a large
amount of information, it is important that it not have to search through all of
that information every time it responds to a query. For that reason, SQUIRE
was designed to provide rapid responses to questions, even when indexing very

large corpora.
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3.2.2 System Properties

o Modularity: SQUIRE is designed to explore the impact of a number of different
semantic improvements to traditional IR techniques. In order to place minimal
restrictions on the types of improvements that can be tested within the SQUIRE
framework, I used a very modular design. Each improvement is implemented
within its own self-contained module. These modules communicate with each
other through a simple, well-specified interface. This allows SQUIRE to be
easily extended to test further semantic improvements. Additionally, this allows

SQUIRE to test the interactions between various potential improvements.

e Domain Extensibility: In order for an information retrieval system to effectively
extract the meaning from a sentence, it must have information about the syntax
and semantics of the language. In particular, it must have specific information
about words, types of words, and syntactic constructs. However, the task of
encoding information about all of the words, types of words, and constructs in
English is a daunting task. Therefore, I designed SQUIRE to ensure that the
new information about specific words and constructs could easily be added. In
addition, following the criterion of wide coverage, I designed SQUIRE to use
reasonable default information whenever it encountered unknown words, word

types, or constructs.

e Simplicity: A simple model is easier to understand, reason about, implement,

and maintain.

o Efficiency: SQUIRE’s performance is affected by a large number of parameters,
whose values are best determined by experimentation. Changing some of these
parameters requires the entire index to be rebuilt. To allow rapid exploration of
the effects of changing these parameters, SQUIRE was designed with efficiency

in mind.
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Chapter 4

SQUIRE: A Semantic Information

Retrieval Engine

The SQUIRE system is divided into two modules: a parser and a database. The
parser converts sentences and questions into weighted sets of relations, each of which
partially encodes a semantic concept. The database maintains an index of the weight-
ed relations that represent a corpus. When the user asks SQUIRE a question, the
parser converts it into a weighted set of relations, and the database then uses those

relations to retrieve the sentences most likely to answer the user’s question.

4.1 Weights

SQUIRE makes extensive use of weights. These weights indicate SQUIRE’s confidence
that a given piece of information is useful. This confidence is derived from a number

of sources, including:

e An overall valuation of the original source of the information. For example,
information derived from an encyclopedia might carry a higher weight than

information derived from an unknown web page.

e The likelihood that the information correctly represents the original source.

When SQUIRE performs a transformation that might be incorrect or inappro-
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priate, it adjusts the weight of its output accordingly.

e The number of independent sources that converge on the same information.
For example, if SQUIRE performs multiple transformations that give the same

result, then the weights resulting the individual transformations are combined.

e The uniqueness of the information. Information which is present in many
sources is a given lower weight than information that is present in only a few

sources.

Weights are represented as floating point numbers in the range [0, 1]. Weights can
be combined in a number of ways, but they are most commonly combined with the

and and or operators:

w1 and wy = wy X W

wy or wy=1—((1—wp) x (1 —ws))

Two weights are combined with or when they represent two different ways a
piece of information might be useful. In particular, if multiple independent sources
converge on the same information, then the weights of the individual sources will be
combined with the or operator.

Two weights are combined with the and when they are independent valuations of
the same piece of information. The and operator is used by parser layers to combine

the weights of their inputs with their own valuation of the information.

4.2 The Parser

The parser is responsible for converting strings of words into relations. It consists
of a set of parser layers, each of which transforms an input to produce an output.
These transformations serve to extract the semantic content of the input, to reduce

its linguistic variation, and to convert it to a form which will allow for easy indexing.
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Sent ence

Head[Re 1] [Head]Rel [Obj | [Head|Re ]

Figure 4-1: Example Parser. This parser is constructed by attaching a number of
parser layers in series. The weighted output of each layer feeds into the input of the
next layer.

Each parser layer transforms each individual weighted input into zero or more weight-
ed outputs. Weights of the outputs reflect both the original weight of the input, and
the effect of the transformation on the weight.

The parser is constructed by attaching a number of parser layers in series, such
that the weighted outputs of one layer feed into the next layer. During indexing, the
original input to the parser is simply the sentences to be indexed, weighted by the
valuation of their source; the final output is the weighted set of relations to be indexed
by the database. During question-answering, the input to the parser is the questions
to be answered, with weight 1, and the output is the weighted set of relations to be
looked up in the database. An example parser, constructed out of parser layers, is

shown in Figure 4-1.

4.2.1 Classifications of Parser Layers

Parser layers can be divided into two basic classes, based on the relation between

their input representation and their output representation:
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e representation-shifting layers input information in one representation, and

transform it into another representation.

e source-to-source layers use the same representation for both their input and

their output.

Parser layers can be further divided into four subclasses, based on how they transform

their input:

e one-to-one layers transform each input into exactly one output. Often, one-

to-one layers do not modify the weight of their input.

e Splitters are used to split complex structures into several simpler structures.
Splitters produce one or more outputs for each input. The weights of the outputs

are generally equal to the weight of the input.

e one-to-many layers are used when SQUIRE cannot determine which of several
possible representations best encodes an input. In this case, the layer outputs
all possible representations, and each representation’s weight is adjusted by

SQUIRE’s confidence that it is correct.

e Filters selectively remove some class of inputs, and pass on the remaining
inputs. Filters generally do not modify the weight of their input. Filters can

be used to remove items that do not have sufficient weights.

4.2.2 Advantages of the Layered Architecture
Simplified Testing and Prototyping

Dividing the parser into a set of modular layers, each of which has a simple interface,
has a number of advantages. First, new semantic processing techniques can be easily
tested by simply adding new layers to SQUIRE’s parser. Second, the interactions
between layers can be examined by running tests while varying which layers are used,

and the order that they are used in. This is especially true of source-to-source layers.
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Third, different algorithms for accomplishing a semantic task can be easily compared
by encapsulating each in a separate module, and examining how the system’s behavior

changes when the modules are swapped.

Graceful Degradation

The fact that every piece of information in SQUIRE is assigned a weight allows a
parser layer to process an input even when it is unable to reliably determine the
proper output. For example, consider the sentence:

(19) Mary likes the man on the roof.
A parser layer might have difficulty deciding between the following interpretations of
(19):

(19') Mary likes the man who is on the roof.

(19') On the roof, Mary likes the man.
In this case, it can simply output all of the possible outputs, each weighted by the the
parser layer’s estimate of the probability that it is a correct transformation. Often,
incorrect interpretations will be given low weights by subsequent parser layers, or
completely eliminated by filter layers. Thus, even if an incorrect interpretation of an

original sentences makes it into the database, it will be given a low weight.

Cognitive Underpinnings

In addition to having useful prototyping properties, the division of the parser into
modular layers may provide a good model of human language processing. Research in
cognitive science suggest that humans process many aspects of language in a number
of simpler steps, with simple interfaces between those steps. Although the exact set
of steps used by the SQUIRE system are doubtless very different from those used
by humans, the general architecture may allow us to examine some of the effects
of processing language in a series of discrete steps. Additionally, as we come to
understand more about the human language processing faculty, we may find new
ways to improve the layered model I used in SQUIRE. For example, the human

language faculty has inspired me to consider ways of allowing information to flow in
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both directions between layers, allowing information from later layers to affect earlier

ones.

4.2.3 Parsing in Parallel

When humans process sentences, they seem to consider the most promising inter-
pretations first, and to only process the less promising interpretations if the more
promising ones are eliminated for some reason. For example, when hearing sentence
“The man pushed by John was named Harry.” most people first interpret the words
“the man pushed by John” to mean that the man was doing the pushing. However,
upon encountering the phrase “was named Harry,” this interpretation is eliminated,
and they must go back and construct a new interpretation of the first part of the
sentence.

In order to give SQUIRE similar behavior, I placed small buffers between each of
the parser layers. These buffers sort the outputs of the prior layer, and feeds them
into the next layer in descending order of weight. Thus, each layer processes the
information with the greatest weights first.

In addition, I allowed each parser layer to run in parallel threads, and to apply
back-pressure to the layers before it. Each layer would process its inputs until its
output buffer was full. At that point, it would only continue processing if the output
buffer shrank. Thus, less promising interpretations never needed to be computed by
prior layers if more promising interpretations were available.

Unfortunately, the overhead of running each parser layer in parallel threads ex-
ceeded the benefit, and so I disabled this feature. However, I believe that this feature
would still be useful if any parser layers were designed that generated a large number

of outputs.

4.3 Representations

Before discussing the individual parser layers that make up SQUIRE’s parser, I will

describe the representations used to communicate between the layers. SQUIRE uses
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four distinct representations to encode the semantic content of sentences and ques-

tions:

e Strings
e Syntax Trees
e Semantic Trees

e Relations

By transforming sentences and questions to this sequence of representations, I

remove linguistic variation and normalize the input to a form suitable for indexing.

4.3.1 Strings

The original input for SQUIRE is a sequences of characters. This string is first
broken up into individual sentence. Each sentence consists of a string of letters,
spaces, and punctuation. Sentences are divided by terminating punctuation marks,

such as periods and question marks.

4.3.2 Syntax Trees

A syntax tree is a tree-shaped structure consisting of phrases, words, traces, and

antecedents.

e phrases represent syntactic phrases. Each phrase is assigned a type, such as

“VP” (verb phrase) or “NP” (noun phrase), and has at least one child.

e words represent the words that make up the sentence. Each word has a surface

form, and may have a stem. For example, the word “walking” would have the

13 13

surface form “walking” and the stem “walk.” Words may not have children.

e traces represent the syntactic traces that result from movement of syntac-
tic phrases. Each trace is assigned a numerical identifier that specifies which

antecedent was moved from the location of the trace.
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e antecedents represent moved syntactic phrases. Each antecedent has a numer-
ical identifier that specifies the antecedent’s trace, and has the moved syntactic

phrase as its single child.

PRO is represented as a special word. This simplifies the representation of syntax
trees, and allows parser layers to treat it like any other pronoun.

Syntax trees can be classified according to the properties of their constituents.
Syntax trees that contain antecedents and traces are surface-structure syntax
trees. Syntax trees that contains no antecedents or traces are deep-structure syn-

tax trees. Syntax trees whose words all have stems are stemmed syntax trees.

4.3.3 Semantic Trees

A semantic tree is a tree-shaped structure consisting of nested semantic phrases.
A semantic phrases consists of a head, its arguments, its modifiers, and a set of

properties.

e heads represent the words that head semantic phrases. Each head consists of a
surface form, a stem, and a semantic class. The semantic class of a head need

not be specified if it is not yet available.

e arguments represent the arguments of a semantic phrase. Each argument con-
sists of a semantic phrase and a thematic role. The thematic role of an argument

need not be specified if it is not yet available.

e modifiers represent the modifiers of a semantic phrase. Each modifier consists

of a single semantic phrase.

e The properties of a semantic phrase are used to keep track of a number of
features which semantic phrases might have. These features can include syn-
tactic information, such as the part of speech of the head, the prepositions used

by prepositional phrases, and the determiners used by nouns. They can also
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Semantic Head Semantic Class Adjunct Relation Type

see observational verb 1 agent

see observational verb give observed-object
give transference verb  John agent

give transference verb ~ book transferred item
give transference verb ~ Mary recipient

Figure 4-2: The relations used to index the sentence “I saw John give a book to
Mary.” Note that all heads are in stem form, since semantic phrases are derived from
stemmed syntax trees.

include semantic information, such as whether a noun is animate. These prop-
erties are currently used to decide what thematic roles the arguments should be

assigned, although they could also be used for other purposes.

Semantic trees containing heads whose semantic classes are unspecified or ar-
guments whose thematic roles are unspecified are called underspecified semantic
trees. Semantic trees containing no heads whose semantic classes are unspecified and

no arguments whose thematic roles are unspecified are called full semantic trees.

4.3.4 Relations

In order to allow partial semantic trees to be indexed and matched, they must be
broken down into simpler component. SQUIRE therefore breaks semantic trees into
a number of relations, each of which encodes the relationship between a single head
and its adjunct. Each relation consists of:

e A semantic head

e The head’s semantic class

e One of the head’s adjuncts

e The thematic role or relation type that relates the head to the adjunct.
An example showing how relations relate to sentence is given in Figure 4-2.

Relations can also be used to encode relations whose semantic class and relation

type are unknown. In this case, the semantic class and relation type are just left blank.

This allows SQUIRE to index relations even if it doesn’t have enough information
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Semantic Head Semantic Class Adjunct Relation Type
John - - -
feed - - -
bone - - -
dog - - -

Figure 4-3: The relations used to index the words in the sentence “John will feed
a bone to the dogs.” Note that only lexical words are indexed, since relations are
extracted from semantic phrases, and semantic phrases contain no functional heads.
Note also that all heads are in stem form, since semantic phrases are derived from
stemmed syntax trees.

to determine their thematic role or relation type. Relations whose semantic class
and relation type are unspecified are underspecified relations. Relations whose
semantic class and relation type are given are full relations.

Finally, relations can be used to encode individual words. When relations are
used in this way, only the head field is used; the other fields are all left blank. By
indexing all of the words in the semantic tree, in addition to its relations, SQUIRE
gains some of the benefits of traditional IR techniques. Figure 4-3 shows how the

words of a semantic tree might be indexed.

4.4 Parser Layers

SQUIRE currently defines eleven parser layers, which can be combined in a variety
of ways to give different parsing behavior. The parser layers defined by SQUIRE are

listed in Figure 4-4, and individually described in the following sections.

4.4.1 The Principar Layer

The first stage in processing a sentence is constructing its syntax tree. A number of
syntactic parsing programs, with various properties, are freely available for research
purposes. I chose to used Dekang Lin’s Principar program to construct syntax trees
for SQUIRE. However, it would be a fairly simple matter to adapt SQUIRE to use a
different parser, if a more appropriate parser were found.

Principar is is based on the “Principles and Parameters” model of syntax that has
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‘ Layer Name H Input ‘ Output ‘ Description

Principar String Syntax Tree Parses strings into syntax

Layer trees.

Stemmer Syntax Tree Stemmed Stems all words in a syntax
Syntax Tree tree.

Clause Syntax Tree Syntax Tree Splits modifying clauses off

Handler from syntax trees.

Conjunction Syntax Tree Syntax Tree Turns single syntax trees that

Handler contain conjoined phrases into

several simpler syntax trees.

Trace Resolver

Surface-Structure

Deep-Structure

Moves antecedents back to

Syntax Tree Syntax Tree their original location
Semantic Tree || Stemmed Semantic Tree | Turns syntax trees into seman-
Maker Deep-Structure tic phrases.

Syntax Tree
Pronoun Semantic Tree Semantic Tree | Replaces pronouns with their
Resolver antecedents.
Property Semantic Tree Semantic Tree | Adds properties to semantic
Adder phrases, based on their head.
Synonymy Semantic Tree Semantic Tree | Uses synonyms to generate
Layer synonymous syntax trees.
Theta Semantic Tree Semantic Tree | Assigns thematic roles to a se-
Assigner mantic tree’s arguments.
Relation Semantic Tree Relation Converts semantic phrases in-
Maker to relations.

Figure 4-4: SQUIRE’s Parser Layers
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been developed since the early 1980’s. I chose to use Principar because it is fast, gives
fairly accurate parses, and always returns its best guess at a parse. This last property
is important, because it allows SQUIRE to index parts of a sentence even if Principar
is unable to find the correct structure for the entire sentence. Unfortunately, the
Principar program does not provide any information about how certain it is of its

parse. Otherwise, we could use this information to modify the weight of the output.

4.4.2 The Stemmer

The Stemmer is a source-to-source, one-to-one parser layer that finds the stem of
every word in a syntax tree. Currently, it uses a large table to find the stems of
known words, but future versions of SQUIRE will most likely employ more advanced

stemming algorithms.

4.4.3 The Clause Handler

Although the semantic phrase representation is capable of encoding most sentences,
there are some constructions which are difficult to directly encode in semantic phrases.
Before syntactic trees can be translated into semantic phrases, these constructions
must be handled.

One construction that is difficult to represent with semantic phrases is the relative
clause. A relative clauses is a type of subordinate clause used to modify a noun phrase.
Consider the following sentences, where the relative clauses are underlined, and the

nouns they modify are written in bold face.

(20) Isaw the box that’s sitting on the hill
(21) I met the man who you know
(22) The song I'm thinking of is very short

In each of these sentences, the noun in bold face fills two semantic roles. In sentence
(20), “the box” is both the EXPERIENCE of the verb “saw” and the AGENT of the verb
“sitting.” In sentence (21), “the man” is both the AGENT of “met” and the THEME of
“know.” And in sentence (22), “the song” is the IDEA of “thinking” and the AGENT

Of ((is 7

92



Although these nouns fill two separate semantic roles for two separate verbs, the
semantic phrase structure only allows a phrase to fill a single semantic role. Thus,
these sentences cannot be directly encoded as semantic phrases. A simple solution is
to split each of these sentences into two separate sentences. The separated sentences
corresponding to sentences (20), (21), and (22) are:

(20") I saw the box. The box is sitting on the hill.
(21') I met the man. You know the man.
(22") The song is very short. I'm thinking of the song.

Sometimes this transformation can distort the meaning of the original sentence.
For example, consider the following sentence, and the two sentences that are derived
by splitting it up:

(23) John does not think there is a man who is under the table.
(23') John does not think there is a man. The man is under the table.

Although this distortion would be problematic for many semantic systems, such as
inference engines, it generally does not interfere with the task of information retrieval.
The reason is that the task of an information retrieval engine is not to directly answer
a question, but only to return any sentences which are relevant to answering it. Even
though sentence (23) does not directly answer the question “Is there a man under the
table,” it is relevant to the question, and should certainly be returned in response to
it.

The Clause Handler is a source-to-source, splitter parser layer responsible for break-
ing relative clauses off into their own sentences. It takes syntax trees as its input,
and for each syntax tree it inputs, it inputs one or more syntax trees representing the
sentence and all of its relative clauses. Currently, the Clause Handler does not modify

the weights of the syntax trees it processes.

4.4.4 The Conjunction Handler

Another construction which is difficult to directly encode with semantic phrase is the
conjoined phrase. Conjoined phrases are two phrases combined by a conjunction,

such as “and” or “or” to produce a single phrase. Consider the following sentences,
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where each child of the conjoined phrases is underlined, and the head they modify is
written in bold face.

(24) 1 saw the cat and the mouse.
(25) John likes Matthew but not Mary.
(26) Green and red are his favorite colors.

In each of these sentences, the two underlined phrases each fill the same semantic
role of the bold-faced head. In sentence (24), both “the cat” and “the mouse” both
fill the EXPERIENCE f-role of the verb “saw.” In sentence (25), “Matthew” and “not
Mary” both fill the THEME f-role of the verb “like.” And in sentence (26), the ASSIGNEE
f-role is filled by both “red” and “green.”

However, semantic phrases only allow a single phrase to fill a semantic role. This
situation is analogous to relative clauses, where one phrase filled two semantic roles.
Indeed, we can use the same solution to handle conjoined phrases: simply split each
sentence into two simpler sentences. The separated sentences corresponding to sen-
tences (24), (25), and (26) are:

(24') I saw the cat. I saw the mouse.
(25') John likes Matthew. John does not like Mary.
(26') Green is his favorite color. Red is his favorite color.

Note that, as with relative clauses, this transformation does not always preserve
the semantic meaning of the input sentence. For example, consider the following
sentence, and sentences that are derived by splitting it up:

(27) John met Mary in the library or in the kitchen.
(27") John met Mary in the library. John met Mary in the kitchen.

But as with conjunctions, this distortion of meaning should not interfere with the
task of information retrieval, since the resulting syntactic phrases still contain the
relationships that are relevant to the original sentence.

This analysis of simple conjoined phrases also applies to complex conjoined phras-
es, top-level conjoined phrases (i.e., conjoined phrases that are not arguments of any
head), and appositives, as illustrated in the following examples:

(28) Monkeys eat eggs, fruit, grass, and insects.
(28') Monkeys eat eggs. Monkeys eat fruit.
Monkeys eat grass. Monkeys eat insects.
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(29) A bell rang out and the tower fell.
(29') A bell rang out. The tower fell.
(30) The Eiffel Tower is located in Paris, the capital of France.
(30") The Eiffel Tower is located in Paris.
The Eiffel Tower is located in the capital of France.

The Conjunction Handler is a source-to-source, splitter parser layer responsible for
breaking sentences with conjoined phrases and appositives into simpler sentences. It
takes syntax trees as its input, and for each syntax tree it inputs, it inputs one or
more syntax trees representing every combination of conjoined phrases. Currently,

the Conjunction Handler does not modify the weights of the syntax trees it processes.

4.4.5 The Trace Resolver

Before a surface-structure syntax tree can be converted into semantic trees, it should
be restored to the deep-structure tree from which it originated. This deep-structure
tree properly captures the sentence’s semantic relationships. Converting a surface-
structure tree to a deep-structure tree is a simple matter of replacing each trace with
its antecedent, and removing the antecedent from its moved position. For example,
the sentence:

(31) John was given a book
would be converted into:

(31") was given John a book.

The Trace Resolver is a source-to-source, one-to-one parser layer responsible for
converting surface-structured syntax trees into deep-structured ones. Currently, the

Trace Resolver does not modify the weights of the syntax trees it processes.

4.4.6 The Semantic Tree Maker

The Semantic Tree Maker is a representation-shifting, one-to-many parser layer. It is
responsible for converting syntax trees into underspecified semantic trees. It assumes
that the syntax trees it is given are stemmed and deep-structured, and that they

contain no relative clauses or conjoined phrases.
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Figure 4-5: Example Templates for the Semantic Tree Maker. These templates are
used to allow SQUIRE to convert syntax trees into semantic trees. Each template
specifies that any syntax tree matching the template’s syntax tree matcher can be
replaced by the semantic tree obtained by filling in the semantic tree filler’s variables.

In order to convert syntax trees into semantic trees, the Semantic Tree Marker uses
a set of templates, which describe the relationship between syntax trees and semantic
trees. The exact set of templates used depends primarily on phrase classifications used
by the syntactic parser. Currently, the Semantic Tree Maker uses a set of templates
designed to handle the syntactic structures generated by Principar. Several example
templates are shown in Figure 4-5.

Each template consists of a syntax tree matcher and a semantic tree filler:

e A syntax tree matcher is a representation of a small piece of syntax tree. It
is structurally identical to a syntax tree, except that it can contain variables in
place of syntax phrases and words. A syntax tree matcher is said to match a
syntax tree if some set of values could be filled in the for the matcher’s variables
to give the syntax tree. The set of values used to fill in the syntax tree matcher’s

variables are called the variables’ bindings.

e A semantic tree filler is a representation of a small piece of a semantic tree. It
is structurally identical to a semantic tree, except that it can contain variables
in place of heads or adjuncts. Semantic tree fillers can be used to construct

semantic trees by replacing their variables with values. This process is known
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as filling the semantic tree filler’s variables.

Every template specifies a valid way of transforming a piece of a syntax tree into
a semantic phrase. In particular, the following set of steps can be used to convert a

syntax phrase into a semantic phrase:

1. Find a template whose matcher matches the syntax phrase.
2. Match the template’s syntax tree matcher against the syntax tree.

3. For every variable that stands for a word, construct the head consisting of the

variable’s binding.

4. For every variable that stands for a syntax phrase, find the semantic phrase

that represents the variable’s binding.

5. Fill the template’s semantic tree filler with the values obtained from steps (3)

and (4).

Note that step (4) is recursive: the entire process described above must be repeated
to convert each of the variable’s bindings, which are syntax phrases, into semantic

phrases. This recursion will always terminate, since all syntax trees have finite depth.

Multiple Template Matches

Occasionally, more than one template might match a syntax phrase. This might
happen, for example, if there are two possible interpretations of a phrase. In this
case, each template is applied separately, to generate as many outputs as there are
matching templates.

Allowing multiple templates to match a syntax phrase should be avoided when
possible, since the number of outputs will grow exponentially with the number of
ambiguous syntax phrases in the sentence. For example, if a sentence contains six
ambiguous syntax phrases, each of which can be described by two templates, the

Semantic Tree Maker will output 2%, or 64 separate semantic trees.
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Template Weighting

Each of the Semantic Tree Maker’s templates can be assigned a weight, which rep-
resents the probability that the template describes a correct transformation. These
weights might be used, for example, when two or more templates can match a syntax
phrase, to distinguish the relative probability that each of the matches is correct.
Whenever a template is used to construct a semantic phrase, its weight is combined

with the syntax tree’s weight, using the and operator.

Unmatchable Syntax Phrases

Sometimes, the Semantic Tree Maker may encounter a syntax phrase which does not
match any of its templates. This usually happens when Principar is unable to find
the correct syntactic parse of a sentence. In this situation, the Semantic Tree Maker

uses the following heuristics to recover:

e If the syntax phrase has exactly one child, the Semantic Tree Maker tries to find
a semantic phrase representing that child. If it is successful, it returns that
semantic phrase. However, it decreases the weight of the phrase combining it
via and with a fixed weight, to account for the fact that this transformation

may be incorrect. Currently, that fixed weight is 0.8.

e [f the syntax phrase has multiple children, then the Semantic Tree Maker returns
a special value, “UNKNOWN,” which represents the fact that the value of
that semantic phrase is unknown. The Semantic Tree Maker then tries to find
semantic phrases representing each child. If successful, these semantic phrases
are returned separately. To account for the fact that this transformation may
be incorrect, the weights of these phrases are decreased by combining them via

and with a fixed weight. Currently, this fixed weight is 0.8.

Advantages of the Template Architecture

I chose to implement the Semantic Tree Maker using this template-based architecture

for two reasons:
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e Domain Extensibility: The template-based architecture is a natural formalism
for describing the relationship between syntax trees and semantic trees. Thus,
the construction of a set of templates is a fairly easy task. It is an easy matter
to add new templates to account for new syntactic constructs. If the parser
used by SQUIRE is changed, constructing an entirely new set of templates to

handle the new parser could be done in a matter of hours.

e Wide Coverage: The template-based architecture allows the Semantic Tree Mak-
er to transform many parts of a syntax tree, even if it does not have sufficient
information to transform the entire tree. Thus, even difficult-to-process sen-

tences can be partially indexed.

4.4.7 The Pronoun Resolver

Pronouns are a significant source of difficulty for the application of traditional IR
systems to sentences. Although the pronouns carry semantic information for any
human reading them, the traditional techniques just treat them as functional words,
which don’t contribute to the sentence’s meaning at all. Clearly, if an IR system is
to decide accurately when a sentence with pronouns answers a question, it must first
determine the semantic values of the pronouns. This semantic value comes from the
pronoun’s antecedent, or the word that the pronoun refers to. Once an IR system
has found the antecedent of every pronoun in a sentence, it can substitute copies of
the antecedents in place of the pronouns. This substitution process is called pronoun
resolution.

To get a preliminary idea of the possible benefits of pronoun resolution, I wrote
the pronoun resolver. The task of the pronoun resolver is to find the antecedents of both
overt pronouns (such as “he” and “her”) and non-overt pronouns (such as “PRO”),
and replace each pronoun with its antecedents. It is a source-to-source, one-to-many
parser layer.

There are a number of linguistic theories, such as Centering Theory [10, 4], whose

algorithms can find the correct antecedents of pronouns with a high degree of relia-
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bility. However, when I designed the pronoun resolver, I first wanted to get an idea of
how worthwhile a full-blown pronoun resolving engine would be. I therefore used a
much simpler algorithm, which took only about six hours to implement. This algo-
rithm was sufficient to demonstrate that pronoun resolution gives significantly better
performance, and will most likely be replaced by a more advanced algorithm in the
future.

The current algorithm used by the pronoun resolver assumes that the antecedent of
a pronoun is the subject of the sentence containing the pronoun (unless the pronoun
itself is the subject), or the subject of one of the two preceding sentences. Each of
these possibilities is given a weight, to reflect the fact that these possibilities are not
equally likely: the subject of the current sentence is given a weight of 0.5 (unless
the pronoun itself is the subject); the subject of the previous two sentences are given
weights 0.3 and 0.2. Although this algorithm is very crude, it was very easy to

implement, and was sufficient to significantly improve the performance of SQUIRE.

4.4.8 The Property Adder

Before deciding which arguments of a head should receive which thematic roles, it is
often useful to determine several properties of the arguments. Consider the following
pair of sentences:

(32) The plane flew to Mexico.

(32") I flew the plane.

The argument “plane” fills the VEHICLE thematic role in both sentences, even
though it is the subject of (32) and the object of (32'). In order to properly assign
the correct thematic roles to the arguments of “fly,” we must know something about
their properties. For example, if we know that “I” is animate, while “plane” is not,
we can determine that “I” functions as the AGENT of “fly,” while “plane” cannot.
Furthermore, once we decide that “to Mexico” is a destination, we can assign it the
DESTINATION thematic role. Of the remaining thematic roles that the verb “fly”

takes, “plane” can only fill the VEHICLE role, since it is a concrete, non-animate, and
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is not a destination.

It could be argued that in sentence (32), the presence of the preposition “to”
serves to distinguish it from (32'), and that this distinction should be sufficient to
allow an IR system to assign thematic roles. However, this argument would not apply
to the similar sentence pair:

(33) The plane flew.

(33") 1 flew.
where the objects of each sentence have been omitted.

The Property Adder parser layer uses a database of word properties to determine
the properties of each argument. For each semantic phrase in a semantic tree, it looks
up the properties of the phrase’s head, and adds those properties to the semantic
phrase. Currently, the database it uses is quite small, although it could be extended
in the future. The Property Adder does not change the weights of any of the semantic

trees it processes. It is a source-to-source, one-to-one parser layer.

4.4.9 The Theta Assigner

The Theta Assigner is a source-to-source, one-to-many parser layer. It is responsible
for splitting each semantic phrase’s adjuncts into arguments and modifiers, and for
assigning thematic roles to each argument.

Like the Semantic Tree Maker, the Theta Assigner makes use of a set of templates.
An example template is shown in Figure 4-6. These templates are used to encode the
possible ways that thematic roles can be assigned to a semantic phrase’s adjuncts.
The templates are divided up according to the semantic class they describe: each
semantic class is described by one or more templates, which encode the possible
syntactic alternations that can be used by that semantic class. Each template consists

of a semantic tree matcher and a thematic filler:

e A semantic tree matcher is a representation of a small piece of an under-
specified semantic tree. It is structurally identical to a semantic tree, except

that it can contain variables in place of semantic phrases. These variable are
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Figure 4-6: Example Template for the Theta Assigner. This example represents the
type of templates used to allow SQUIRE to assign thematic roles to semantic trees.
Each template specifies that any underspecified semantic tree matching the template’s
semantic tree matcher can be replaced by the full semantic tree obtained by filling in
the thematic filler’s variables.

each parametrized by a set of properties. A semantic tree matcher is said to
match a semantic tree if some set of semantic phrases could be filled in for
the matcher’s variables, to give the semantic tree. Each value semantic phrase
filled in for a variable must have properties consistent with that variable. The
set of values used to fill in the semantic tree matcher’s variables are called the

variables’ bindings.

A thematic filler is a representation of a small piece of a full semantic tree. It
is structurally identical to a semantic tree, except that it can contain variables in
place of arguments, and it does not contain any modifiers. Thematic fillers can
be used to construct semantic trees by replacing their variables with values. A
set of modifiers can also be optionally added to the semantic tree. This process

is known as filling the thematic filler’s variables.

In addition to this database of templates, the Theta Assigner maintains a list of the

possible semantic classes that each head may take. For example, most nouns can only

take the semantic class SIMPLE-NOUN, while the semantic classes of the verb “get”

might include RECIEVE-ACTION (in “he got the camera”) and BECOME-VERB (in “he

got better”). In this list, each of a word’s possible semantic classes can be assigned a

weight, to represent the relatively likelihood that a word will fill that semantic classes.

Each template specifies a valid way of assigning thematic roles to a semantic
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tree’s adjuncts. In particular, the following set of steps can be used to convert an

underspecified semantic phrase into a full semantic phrase:

1. Find the possible semantic classes of the underspecified semantic phrase’s head.

2. For each semantic class, find any template for that semantic class that matches

the underspecified semantic phrase.
3. For each template found:

(a) Convert the bindings of each of the template’s variables from underspeci-

fied semantic phrases into full semantic phrases.

(b) Fill the template’s thematic filler with the values obtained from step 3a.

Note that step (3a) is recursive: the entire process described above must be repeated
to convert each of the variable’s bindings. This recursion will always terminate, since

all semantic trees have finite depth.

Defining Semantic Classes

One of the most difficult aspects of building the Theta Assigner is the construction of a
set of semantic classes. Even though a great deal of research supports the notion that
words can be divided into semantic classes, no one has yet successfully constructed a
complete, consistent set of semantic classes.

The semantic classes used to test the Theta Assigner were hand-constructed, and
described only a small set of words. These classes were designed to help SQUIRE
answer the test questions, in order to provide some indication of the potential gains
that the Theta Assigner might provide. However, until a complete set of semantic

classes can be developed, this layer will not provide any wide-coverage benefits.

4.4.10 The Synonymy Layer

One important type of linguistic variation that can prevent an information retrieval
system from deciding that a sentence answers a question is synonymy. For example,

consider the following question and answer:

63



(34) What do pigs eat?

(34") Hogs feed on corn.

Although sentence (34') answers question (34), it does not use the same set of
words. Without some way of finding a words’ synonyms, an information retrieval
system will have no chance of finding answers like (34).

As a preliminary investigation into the potential benefit of synonymy, I imple-
mented a simple Synonymy Parser Layer. This layer uses a table of words and their
synonyms to generate equivalent sentences. Each synonym in the table is given a
weight, which reflects the probability that the synonym will accurately reflect the
meaning of the original word. In order to reduce the chance that the Synonymy Lay-
er will generate inappropriate synonyms, information about the semantic classes of
words and their synonyms can also be included in the table. For example, “recieve”
might be listed as a synonym of the RECIEVE-ACTION sense of “get,” but not as a
synonym of the BECOME-VERB sense.

When the Synonymy Layer encounters a sentence, it outputs that sentence, plus
any other sentences obtained by replacing a word with one of its synonyms. Each of
these sentence’s weights is decreased according to the weights of the synonyms used.
In order to prevent the generation of too many sentences, limits may be placed on
the total acceptable decrease in weight of the original sentence.

Although the Synonymy Layer could be used when indexing a corpus, doing so
would greatly increase the size of the index. A better approach is to only use the
Synonymy Layer when processing questions. Thus, for example, if a user asks the
question:

(35) What do pigs eat?
then the synonymy layer might add the questions:

(36) What do pigs feed on?
(37) What do hogs eat?
(38) What do hogs feed on?

The weights of each of these questions would be decreased slightly to reflect the fact

that they may not accurately model the original question.
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Currently, the the table of synonyms used by the Synonymy Layer is small, and its
entries were entered by hand. These entries were designed to help SQUIRE answer
the test questions, in order to provide some indication of the potential gains of adding
a full-fledged synonymy layer. This small table will eventually be replaced by a larger
table, constructed from an existing database of synonyms such as WordNet.

I also plan to extend the Synonymy Layer to allow the mapping between thematic
roles of two synonyms to be specified. For example, “give” and “receive” could be

listed as synonyms by specifying the following mapping between thematic roles:

give receive
AGENT SOURCE
BENEFICIARY AGENT
THEME THEME

4.4.11 The Relation Maker

The Relation Maker is a representation-shifting splitter that converts semantic trees

into relations. It can operate in three basic modes:

e In word extraction mode, it outputs a single relation for each word in the
semantic tree.

e In underspecified relation extraction mode, it outputs a single relation for
every head/adjunct pair in the semantic tree. The semantic class of the head
and the thematic role of the argument are left unspecified.

e In full relation extraction mode, it outputs a single relation for every
head/adjunct pair whose semantic class and thematic role are known.

The Relation Maker can also operate in any combination of those modes. For

example, it can be instructed to extract both words and full relations.

4.5 The Database

SQUIRE’s database consists of a very large table of relations. For each relation in the
database, this table contains a list of the locations of all the sentences containing that

relation. For each sentence location, the database also contains a weight, indicating
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Figure 4-7: Database Structure. A database consists of a table of relations, and the
locations of the sentences containing those relations. The weights associated with
each location indicate the likelihood that the given location actually contains the
given relation. In this figure, relations are written as tripples containing a head, a
thematic role, and an adjunct. “Weight” and “Location” stand for actual weights
and locations.

how strongly the location is associated with the relation. Figure 4-7 illustrates the

structure of the database.

4.5.1 Indexing

When SQUIRE indexes a sentence, it first uses the parser to convert it into a set of
weighted relations. For each of those relations, a pointer to the sentence is inserted
into the database, along with the weight of the relation. This process is illustrated

in Figure 4-8.
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Source Sentence

Database John saw Mary hit Bill
sce  [AlJohn |
see | Ofhit |
hit — [AlMary |
|

|

hit _ [olBill

Bill thinks Mary hit Bill
think JA[Bill |
think_[O[ hit |

hit  [AlMary |

hit — [olBill |
Joe thinks Bill hit someone
think [A[Joe |
think [ Of hit |
[think [O[hit | { hit__ A[BIll |

hit  [O[someone |

John saw Bill hit someone
see  |A[John |
see  |Olhit |
—»[hit __[A[BIll |
hit [0l someone |

Figure 4-8: Database Indexing. First, the parser is used to convert a sentence into
a set of weighted relations. For each relation in a sentence, an entry is added under
the relation in the database specifying the location of the sentence it came from.
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4.5.2 Retrieval

When a user asks SQUIRE a question, it first uses the parser to convert it into a
set, of weighted relations. The weights of these relations reflect SQUIRE’s degree of
certainty that the relations are actually relevant to the question. SQUIRE then looks
up each relation in the database, to find the locations of each sentence that contains
that relation. The weights of these locations are combined with the weights of the
relations that generated them via the and operator. This accounts for the fact that
a location is only relevant to a question if the location is relevant to the relation and
the relation is relevant to the question. These weights are then divided by the number
of times the relation appears in the corpus, to give higher weights to less common
relations.

Once SQUIRE has generated a list of weighted locations for each relation, these
weighted locations are merged. Whenever two or more relations independently gener-
ate the same location, the weights of those locations are combined via the or operator.
This accounts for the fact that the location is relevant to the question if either of the
relations indicates that it is relevant.

The process of retrieval is shown in Figure 4-9.

68



Source Sentence [Weight

Question John saw Mary hit Bill | 0.75
Who thinks Mary hit Bill Database 0 e T '
think [0]who | _---->[see[Ohit

|

|

hit [AlMay |

(it Jo[Mary] hit _ [O[Bill |
Bill thinks Mary hit Bill

|

|

|

|

_.---»{think_[A[BIll 0.825

think [ O[hit
hit  [A[Mary
hit _ [o[Bill

_--->Lthink_[A]Joe |
think [ o[ hit | los
A\ .--~Lhit__[A[Bill |

/X5 .--»[hit__]Olsomeone |
=

’
’

<A nJohn saw Bill hit someon
© N lsee [Alohn ]
! “~»[see [Ofhit |
—————————— »[hit_ [A[Bill | |o
_.----+[hit _ [Olsomeone |

%4

think | Al Joe

Figure 4-9: Database Retrieval. A database is first constructed by indexing the
relations in the source sentences. When SQUIRE is given a query, each relation in
the query is looked up in the database, and the resulting locations are returned,
ordered by how likely they are to answer the question. The weights given for this
example assume that all question relations have a weight of 1.0 and that all indexed
relations have a weight of 0.5.
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Chapter 5

Testing

The performance of the SQUIRE system was tested using the Worldbook Encyclope-

dia and a set of about 40 questions about animals and countries.

5.1 Test Materials

5.1.1 Test Corpus

The Worldbook Encyclopedia is a collection of about twenty thousand articles on a
wide variety of topics [29]. The average article is about 500 words long, although
article length varies widely. The Worldbook Encyclopedia was chosen because it
consistently uses proper English sentences, and because it is a rich source of answers

to common questions.

5.1.2 Test Questions

SQUIRE was tested with a set of 38 questions about animals and countries, including

questions such as:

e What do seals eat?
e What do squirrel monkeys eat?

e Where do lions live?
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e What is the capital of Benin?

The answers for the questions were found by hand, by reading all articles which
seemed relevant to them. The average question was answered by four separate sen-
tences, although the number of sentences answering a question varied widely, ranging

from one to eighteen.

5.1.3 Test Indexes

I tested the SQUIRE system with twenty-eight different indexes, each constructed by
using a different set of parser layers. These indexes explored each possible combination

of the following five boolean parameters:
pro indicates whether the pronoun resolution layer is used.
syn indicates whether the synonymy layer is used.

word indicates whether individual words are extracted from the semantic phrases and

included in the index.

ur indicates whether underspecified relations are extracted from the semantic phras-

es and included in the index.

fr indicates whether full relations are extracted from the semantic phrases and

included in the index.

Note that at least one of word, ur, and fr must be true, since otherwise the index
would be empty.

In all test cases, the Principar, Stemmer, Clause Handler, Conjunction Handler, Trace
Resolver, Semantic Tree Maker, Property Adder, and Relation Maker parser layers were

used.

5.2 Methodology

To test each configuration of parameters, I first constructed the necessary indexes. I

then ran SQUIRE on each index, and asked it every question in the test set. For each
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Figure 5-1: Precision-Recall Curve of the Control IR System

question, the first 300 responses were recorded, and compared against the known set
of correct answers.

Precision-recall graphs were constructed by varying the number of SQUIRE’s re-
sponses considered. For every n, 0 < n < 300, I calculated a precision and recall

value:

|AU B,

Pn= —p T
| Bn|

[AU B,

Tp = ———
|A]

Where A is the set of sentences that correctly answer a question, and B,, is the first n
sentences returned by SQUIRE. Note that this method does not give precision /recall
pairs for any point where p,/r, > |A|, since that would imply that |B,| < 1 (i.e.,
that SQUIRE returned less than one sentence). In all precision-recall graphs, the

area where p,/r, > |A| is shaded, to indicate that no data is available in this area.
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5.3 Control

Precision-recall graphs are highly dependent on the exact test set used to generate
them. I therefore ran my test set on an information retrieval system which uses
traditional techniques to perform sentence-based IR. This system, which is a subset
of the Strata IR engine, was developed by Jimmy Lin [19]. The precision-recall curve

given by the control system is shown in Figure 5-1.

5.4 Results

Although each of the parameters interacts with the others to form the resulting
precision-recall curves, it is informative to consider the individual effects of each
parameter on the curve. I will therefore examine the overall effect of each parameter
on the precision-recall curves independently, and discuss how these effects interact

with each other.

5.4.1 Effects of the word parameter

Indexing the words from the corpus is very similar to performing traditional word-
based IR. Figure 5-2 shows how their performance compares. SQUIRE slightly out-
performs the control IR system, although neither achieves a precision higher than
about 20%. I have not examined why SQUIRE outperforms the control IR system
when it only indexes words, although it may result from differences in the weighting
algorithms used by SQUIRE and by the control IR system.

Retrieval based on words gives low performance, although that performance can be
augmented somewhat through the use of the pronoun resolution and synonymy layers,
as shown in Figure 5-3. This configuration of SQUIRE gives fairly low precision, but
its precision decreases gradually, which results in relatively good recall characteristics:

the first 50 answers returned by SQUIRE contain over half of the correct answers.
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Figure 5-2: Comparison of Control IR System to SQUIRE Indexing Words
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Figure 5-3: Precision-Recall Curve of SQUIRE Using the Pronoun-Resolution and
Synonymy Layers to Index Words
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Figure 5-4: Precision-Recall Curve of SQUIRE Indexing Underspecified Relations.

5.4.2 Effects of the ur parameter

Indexing the underspecified relations in the corpus significantly increases SQUIRE’s
precision, as shown in Figure 5-4. Indexing just the underspecified relations, SQUIRE
achieves a precision of 42%, and when augmented by the pronoun resolution and
synonymy layers, it achieves a precision of 62%. This high precision reflects the fact
that matching relations very reliably indicates that a sentence answers a question. In
fact, when SQUIRE indexes only underspecified relations, it very rarely returns an
incorrect answer; instead, it returns no answer at all.

However, that high precision comes at a cost: if a sentence’s relations do not
match a question’s, then it will never be answered, even if they have almost identical
word content. Thus, the precision drops off very quickly as recall increases, and
SQUIRE never retrieved more than 22% of the correct answers when indexing just
underspecified relations.

This cost can be overcome by indexing words in addition to relations. By indexing
both words and underspecified relations, SQUIRE can achieve excellent performance,
with a high initial precision that drops off slowly as recall increases. Figure 5-5 shows

SQUIRE’s performance when indexing both words and underspecified relations, and
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Figure 5-5: Precision-Recall Curve of SQUIRE Indexing Both Words and Underspec-
ified Relations.

compares it to indexing either individually.

5.4.3 Effects of the fr parameter

Indexing full relations gives very similar behavior to indexing underspecified rela-
tions. Under almost every parameter setting, indexing full relations and indexing
underspecified relations gives equivalent performance. In addition, indexing both
types of relations also gives equivalent performance. Figure 5-6 compares the use of
full relations to that of underspecified relations under a number of parameter settings.

The failure of full relations to improve the performance of SQUIRE probably
stems from two sources. First, SQUIRE’s algorithm for deriving semantic classes and
relation types is still relatively primitive, and may not be reliable.

But there is a second, more fundamental, reason why full relations should not
significantly improve SQUIRE’s performance. The relation type, which is the primary
additional information that distinguishes full relations from underspecified relations,
is often unnecessary for the task of information retrieval. To see why, consider the

sentence “elephants live in Africa.” It is composed of two relations:
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Semantic Head Semantic Class Adjunct Relation Type
live location verb elephant  agent
live location verb Africa location

Although the relation types are explicitly listed, they could also be derived from
independent semantic constraints: only under exceptional circumstances can Africa
be the agent of the verb “to live,” or can elephant its location. Neither the corpus nor
any question we encounter will ever contain these head/adjunct pairs with different
relation types. Therefore, the relation types give us no additional information with
which to decide whether two relations match.

Whenever the type of a relation can be reliably predicted from its head and its
argument, finding that relation type will not improve IR performance. However, in
sentences like “John likes Mary,” where the arguments could easily be exchanged, full
relations improve performance. Further research is necessary to determine how often
the type of a relation can be predicted from its head and its argument. This research

would give us a better indication of whether constructing full relations is worthwhile.

5.4.4 Effects of the pro parameter

The use of the pronoun resolution layer increases SQUIRE’s precision and recall,
regardless of the other parameter settings. The effect of this parser layer on SQUIRE’s
performance under a number of parameter settings is shown in Figure 5-7.

This uniform increase in performance is to be expected, since pronoun resolution
replaces pronouns, which should never be used in matching, with useful values. This
allows SQUIRE to match sentences that it wouldn’t otherwise, whether it is indexing
words, full relations, or underspecified relations.

As shown by Figure 5-7, the pro parameter has a stronger effect when full relations
or underspecified relations are indexed than it does when only words are indexed. This
may result from the decrease in weight when assigning a value to a pronoun. This
decrease will have a stronger effect on word-based IR than it does on relation-based
IR, since individual words are more common than individual relations. Thus, there

will be more sentences with the same words but with higher weights that will give
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Figure 5-7: Precision-Recall Curves Illustrating the Effect of the Pronoun-resolution
Parser Layer
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Figure 5-8: Precision-Recall Curves Illustrating the Effect of the Synonymy Layer
when Relations are Indexed

better matches to the question.

5.4.5 Effects of the syn parameter

The use of the synonymy layer increases SQUIRE’s precision and recall whenever full
relations or underspecified relations are indexed, as shown in Figure 5-8. However,
the effect is not not nearly as dramatic as that of the pronoun resolution layer. In
fact, the synonymy layer actually slightly decreases SQUIRE’s performance when only
words were indexed, as shown in Figure 5-9.

The fact that the synonymy layer does not significantly improve performance is
most likely a reflection of the fact that the algorithms used by the layer are not
advanced enough to reliably find useful synonyms. The use of more advanced al-
gorithms might allow the synonymy layer to yield more significant improvements to

performance.
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Figure 5-9: Precision-Recall Curves Illustrating the Effect of the Synonymy Layer
when Only Words are Indexed

Another possible obstacle to the synonymy layer is over-generation of inappropri-
ate synonyms. This over-generation leads SQUIRE to retrieve articles which are not
actually relevant, simply because they contain the correct set of synonyms. However,
this problem is reduced by by associating weights with the synonyms, which indicate

how likely they are to correctly represent the original word.

5.5 Conclusions

Figure 5-10 compares the performance of SQUIRE, using all semantic IR techniques,
to that of the control system. SQUIRE significantly out-performs the traditional IR
system.

The three parameters which provide the greatest benefit to SQUIRE’s performance
are underspecified relation indexing, word indexing, and pronoun resolution. Under-
specified relation indexing provides SQUIRE with high-precision answers, whenever
a question’s relations can be matched against a sentence’s. Word indexing provides
SQUIRE with a fall-back mechanism when all the sentences whose relations match

have been exhausted. It thereby gives precision a gentle drop-off as recall increases.
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Figure 5-10: Comparison of the Performance of SQUIRE with All Features Enabled
to the Performance of the Control IR System

Finally, pronoun resolution allows SQUIRE to match many sentences that do not
explicitly contain the concepts they discuss.

In contrast, full relation indexing and synonymy detection do not seem to sig-
nificantly improve SQUIRE’s performance. While this lack of improvement may be
caused by inadequate implementations, it may also stem in part from more funda-

mental limitations of these techniques.
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Chapter 6

Future Directions

SQUIRE has shown that semantic-based techniques can far out-perform traditional
techniques in the task of sentence level information retrieval. However, there is still a
great deal of room for improved performance, and further research is necessary to ex-
plore the potential of semantic IR techniques. SQUIRE’s layered parsing architecture

provides a useful platform for this exploration.

6.1 Improving Existing Parser Layers

Several of the parser layers currently used by SQUIRE use primitive techniques, and
do not always provide accurate results. These techniques were used so that the
layers could be rapidly developed, and their potential could be tested. Now that
these layers have demonstrated their usefulness, they should be updated to use more
advanced techniques. In particular, the following improvements should be made to

the algorithms used by the parser layers:

e The Stemmer is currently based on a large, pre-generated table of stems and
words. As a result, it is unable to stem any novel words. The Stemmer should be
re-implemented using rule-based or probabilistic techniques, or a combination

of both.

e The Pronoun Resolver currently assumes that any pronoun refers to the subject
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of the current sentence or one of the past two sentences. Also, it does not
currently check for matching of such features as gender or number. Clearly,
this is a vast oversimplification of pronoun behavior. The algorithms used by
the Pronoun Resolver should be replaced with more accurate and linguistically-

motivated techniques, such as those derived from Centering Theory [4].

e The Synonymy Layer currently contains only a handful of synonyms, and does
not allow the user to specify synonyms with different semantic classes. The
Synonymy Layer should be updated to use an existing source, such as WordNet,
to derive its set of synonyms. It should also be updated to allow for synonyms

with different semantic classes.

e The set of semantic classes employed by the Theta Assigner needs significant

improvement before it can become a truly useful parser layer.

6.2 Creating New Parser Layers

New semantic processing techniques can be easily incorporated into SQUIRE’s layered
architecture, simply by constructing new parser layers. Once a new parser layer has
been constructed, its effects on SQUIRE’s performance can be easily tested. The
interactions between the new layer and existing layers can also be explored.

For example, a parser layer could be constructed to use simple semantic impli-
catures. These semantic implicatures would be encoded in the form of rules. For
example, consider the following rule:

(39) %z gave %y 9z implies %y received %z
This rule could be used by SQUIRE to decide that the sentence “Mary gave John an
apple” answers the question “What did John receive?” The addition of such rules
could be used to improve SQUIRE’s performance within specific domains, while not

hindering its performance outside those domains.
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6.3 Fundamental Changes to SQUIRE

Although SQUIRE’s architecture allows for rapid prototyping and testing of semantic
IR techniques, there are a few fundamental problems with its current representations.
Many of these problems arise from the fact that tree-structured representations are
treated as atomic units. Thus, whenever a piece of a tree-structured representation
is ambiguous, the whole structure must be duplicated once for every possible inter-
pretation. This becomes especially problematic for sentences that are ambiguous in
multiple locations. Consider the sentence:

(40) He wanted to give it to her, but he didn’t know if she would want it.

This sentence contains six pronouns. Since the Pronoun Resolver currently assigns
three possible values to every pronoun, it will convert this sentence into over seven
hundred “possible” sentences. Each of these seven hundred sentences will have to be
processed by the following parser layers. Clearly, this is a great source of inefficiency
in SQUIRE.

However, the problem goes beyond a mere question of efficiency. In some cases, the
inability to assign different weights to different parts of a tree causes more fundamental
problems. Consider the sentence:

(41) John likes Mary and Ann.

Currently, this sentence is broken into two separate sentences:
(42) John likes Mary.
(43) John likes Ann.

However, it is unclear what weights these sentences should be given. Currently,
SQUIRE assigns them the same weight as the sentence that they are derived from.
However, that means that when they are broken into relations, the relation “John
likes” and the words “John” and “like” will be given a higher weight than it would
be given if SQUIRE were just indexing sentences (42) or (43). This is especially
problematic for highly conjunctive sentences, such as:

(44) They feed on such animals as monkeys, antelope, muntjacs, jackals, pea-
cocks, snakes, sheep, goats, and dogs.

In this sentence, the word “feed” is weighted about nine times as strongly as it
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should be. As a result, this sentence was returned in response to almost every question
about what any animal feeds on.

One solution would be to assign the derived sentences (42) and (43) half the weight
of the original sentence, (41). This would give “John likes” the proper weight, but
would result in “likes Mary” and “likes Ann” receiving weights that are too small.

The only way to circumvent this problem is to change SQUIRE’s representations
to allow individual parts of a tree-structured representation to have multiple possible

values, each with its own weight.
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